This graduate-level course covers fluid systems dominated by the influence of interfacial …

This graduate-level course covers fluid systems dominated by the influence of interfacial tension. The roles of curvature pressure and Marangoni stress are elucidated in a variety of fluid systems. Particular attention is given to drops and bubbles, soap films and minimal surfaces, wetting phenomena, water-repellency, surfactants, Marangoni flows, capillary origami and contact line dynamics.

This is a 2-unit Service Learning option associated with the "Special Topics: …

This is a 2-unit Service Learning option associated with the "Special Topics: The History, Geology, and Ecology of Monterey Bay" course. Students will learn about Monterey Bay in the special topics course and will share their knowledge with K-12 grade children at local schools by participating in the Virtual Canyon Project.

" The fundamental concepts, and approaches of aerospace engineering, are highlighted through …

" The fundamental concepts, and approaches of aerospace engineering, are highlighted through lectures on aeronautics, astronautics, and design. Active learning aerospace modules make use of information technology. Student teams are immersed in a hands-on, lighter-than-air (LTA) vehicle design project, where they design, build, and fly radio-controlled LTA vehicles. The connections between theory and practice are realized in the design exercises. Required design reviews precede the LTA race competition. The performance, weight, and principal characteristics of the LTA vehicles are estimated and illustrated using physics, mathematics, and chemistry known to freshmen, the emphasis being on the application of this knowledge to aerospace engineering and design rather than on exposure to new science and mathematics."

This course gives a mathematical introduction to neural coding and dynamics. Topics …

This course gives a mathematical introduction to neural coding and dynamics. Topics include convolution, correlation, linear systems, game theory, signal detection theory, probability theory, information theory, and reinforcement learning. Applications to neural coding, focusing on the visual system are covered, as well as, Hodgkin-Huxley and other related models of neural excitability, stochastic models of ion channels, cable theory, and models of synaptic transmission. Visit the Seung Lab Web site.

This course will survey physics concepts and their respective applications; it is …

This course will survey physics concepts and their respective applications; it is intended as a basic introduction to the current physical understanding of our universe. In this course, the student will study physics from the ground up, learning the basic principles of physical law, their application to the behavior of objects, and the use of the scientific method in driving advances in this knowledge. This course focuses on Newtonian mechanics--how objects move and interact--rather than Electromagnetism or Quantum Mechanics. While mathematics is the language of physics, the student need only be familiar with high school-level algebra, geometry, and trigonometry; the small amount of additional math needed will be developed during the course. (Physics 101; See also: Biology 109, Chemistry 001, Mechanical Engineering 005)

Organization of synaptic connectivity as the basis of neural computation and learning. …

Organization of synaptic connectivity as the basis of neural computation and learning. Single and multilayer perceptrons. Dynamical theories of recurrent networks: amplifiers, attractors, and hybrid computation. Backpropagation and Hebbian learning. Models of perception, motor control, memory, and neural development. Alternate years.

Designed to meet the scope and sequence of your course, Introduction to …

Designed to meet the scope and sequence of your course, Introduction to Philosophy surveys logic, metaphysics, epistemology, theories of value, and history of philosophy thematically. To provide a strong foundation in global philosophical discourse, diverse primary sources and examples are central to the design, and the text emphasizes engaged reading, critical thinking, research, and analytical skill-building through guided activities.

This is an open-access textbook for calculus-based introductory physics courses. Anyone that …

This is an open-access textbook for calculus-based introductory physics courses. Anyone that complies with the license is welcome to modify and use this work for their own use, and we hope that you will choose to contribute. The textbook is specifically intended for a flipped-classroom approach, wherein students complete readings at home and the material is then discussed in class. The textbook thus contains questions and activities to engage readers. This text also includes a curriculum in experimental physics, detailing the scientific method and process, suggesting experiments to perform at home and in the lab, and has chapters that cover: writing and reviewing proposals, writing and reviewing reports, analyzing data, as well as an introduction to python. Finally, this textbook was written with many contributions from students! We hope that you may find it useful, and we are interested to know if you are using it!

Table of Contents:

The scientific method and physics Comparing model and experiment Describing motion in one dimension Describing motion in multiple dimensions Newton's Laws Applying Newton's Laws Work and energy Potential energy and conservation of energy Gravity Linear momentum and the centre of mass Rotational dynamics Rotational energy and momentum Simple harmonic motion Waves Fluid mechanics Electric charges and fields Gauss' Law Electric potential Electric current Electric circuits The magnetic force Sources of magnetic field Electromagnetic induction The theory of Special Relativity Appendix A: Vectors Appendix B: Calculus Appendix C: Guidelines for lab related activities Appendix D: The python programming language

Students use a microphone and Vernier LabQuest to record the sound of …

Students use a microphone and Vernier LabQuest to record the sound of a finger-snap echo in a 1-2 meter cardboard tube. Students measure the time for the echo to return to the microphone, and measure the length of the tube. Using their measurements, students determine the speed of sound. While other authors have produced similar labs, this version includes uncertainty analysis consistent with effective measurement technique as presented in the module Measurement and Uncertainty.

" This class explores the creation (and creativity) of the modern scientific …

" This class explores the creation (and creativity) of the modern scientific and cultural world through study of western Europe in the 17th century, the age of Descartes and Newton, Shakespeare, Milton and Ford. It compares period thinking to present-day debates about the scientific method, art, religion, and society. This team-taught, interdisciplinary subject draws on a wide range of literary, dramatic, historical, and scientific texts and images, and involves theatrical experimentation as well as reading, writing, researching and conversing. The primary theme of the class is to explore how England in the mid-seventeenth century became "a world turned upside down" by the new ideas and upheavals in religion, politics, and philosophy, ideas that would shape our modern world. Paying special attention to the "theatricality" of the new models and perspectives afforded by scientific experimentation, the class will read plays by Shakespeare, Tate, Brecht, Ford, Churchill, and Kushner, as well as primary and secondary texts from a wide range of disciplines. Students will also compose and perform in scenes based on that material."

This book is a journey through the world of physics and cosmology, …

This book is a journey through the world of physics and cosmology, and an exploration of our role in this universe. We will address questions such as: What if the force of gravity were a little stronger? What if there were more of fewer atoms in our universe? What if Newton and not Einstein had been right? Would we still be here? Can the universe exist without us to observe it? Can chance explain the world around us, as well as us?

The purpose of this book is to phrase these questions and pursue the consequences of potential answers through rigorous scientific reasoning; in the process we will learn how the very small and the very large are interconnected, and even how we can affect events that happened six billion years ago.

Licensed CC-BY-4.0 with attribution instructions on page 2 of the document.

Table of Contents

Introduction 7 The fundamental forces 10 The force of gravity 18 What if … the force of gravity were different? 23 The electric and magnetic forces 26 The electric force 27 What if … the electric force were different? 39 The magnetic force 48 What if … the magnetic force were different? 58 The strong and weak forces 59 What if … ? 65 How do forces work? 74 The history of the universe 85 What if … ? 94 The history of our species 106 Odds 124 The building blocks of the universe 128 What if … ? 140 Dark energy 150 What if … dark matter were more interesting? 159 When you do not look…. 162 Manifestations of the wave nature of matter 169 The delayed choice experiment: Affecting the past 186 What if … ? 191 The story so far 195 Unification and our role 199 Fine-tuning? 214 The Multiverse and aliens 226 The laws of physics 234 The Anthropic Principle and Puddle Theory 237 Post mortem 249 Further reading and chapter notes 251

This is an introductory text intended for a one-year introductory course of …

This is an introductory text intended for a one-year introductory course of the type typically taken by biology majors, or for AP Physics 1 and 2. Algebra and trig are used, and there are optional calculus-based sections. My text for physical science and engineering majors is Simple Nature.

This is an introductory text intended for a one-year introductory course of …

This is an introductory text intended for a one-year introductory course of the type typically taken by biology majors, or for AP Physics 1 and 2. Algebra and trig are used, and there are optional calculus-based sections. My text for physical science and engineering majors is Simple Nature.

Table of Contents 0 Introduction and review 1 Scaling and estimation 2 Velocity and relative motion 3 Acceleration and free fall 4 Force and motion 5 Analysis of forces 6 Newton's laws in three dimensions 7 Vectors 8 Vectors and motion 9 Circular motion 10 Gravity 11 Conservation of energy 12 Simplifying the energy zoo 13 Work: the transfer of mechanical energy 14 Conservation of momentum 15 Conservation of angular momentum 16 Thermodynamics 17 Vibrations 18 Resonance 19 Free waves 20 Bounded waves 21 Electricity and circuits 22 The nonmechanical universe 23 Relativity and magnetism 24 Electromagnetism 25 Capacitance and inductance 26 The atom and E=mc$^2$ 27 General relativity 28 The ray model of light 29 Images by reflection 30 Images, quantitatively 31 Refraction 32 Wave optics 33 Rules of randomness 34 Light as a particle 35 Matter as a wave 36 The atom

This is an introductory text intended for a one-year introductory course of …

This is an introductory text intended for a one-year introductory course of the type typically taken by biology majors, or for AP Physics 1 and 2. Algebra and trig are used, and there are optional calculus-based sections. .

The Massachusetts Institute of Technology (MIT) OpenCourseWare (OCW) is a free and …

The Massachusetts Institute of Technology (MIT) OpenCourseWare (OCW) is a free and open educational resource for faculty, students, and self-learners around the world. OCW is a publication of MIT course materials both from the undergraduate and graduate levels. It does not require any registration, is not a degree-granting or certificate-granting activity, and does not provide access to MIT faculty. The course sites often contain lecture notes, problem sets, readings, assignments, exams, study materials, and other resources. Open courseware is available on a variety of subjects, including Earth, atmospheric, and planetary sciences, and can be used for self-study or curriculum development.

Concepts and physical pictures behind phenomena that appear in interacting many-body systems. …

Concepts and physical pictures behind phenomena that appear in interacting many-body systems. Concentrates on path integrals, meanfield theories and a semiclassical picture of fluctuations around the meanfield state. Some correlation function and finite temperature techniques also covered.

This course is an introduction to the aspects of marine geology and …

This course is an introduction to the aspects of marine geology and oceanography that affect the environment and marine resources. Service-learning is an essential component of how students learn about the earth. We deliver part of the content of this course by arranging for students to solve a problem with a local community partner.

Course taught by Prof. Ed Laine, Bowdoin College (edlaine@bowdoin.edu) and Cathryn Field, Lab Instructor (cfield@bowdoin.edu). Example compiled by Suzanne Savanick, Science Education Resource Center (ssavanic@carleton.edu).

This Mathematical Physics II module builds on the Mathematical Physics I module. …

This Mathematical Physics II module builds on the Mathematical Physics I module. It addresses differential and integral calculus tools for functions (scalar and vector) of multiple variables. It reviews the areas of vectors, spatial geo-metry, vector functions, curves, surfaces, partial derivatives, multiple integrals and diverse applications such as surface and volume calculations. It also covers the notions of curvilinear integrals and surface integrals as well as the theorems of Gauss, Green and Stokes. It concludes with applications in wave theory and magneto-electric wave propagation. This last section, which explains some ap-plications in the field of physics, gives the learner an idea of how mathematics is applied in practice.

These exercises target student misconceptions about how to properly measure voltage and …

These exercises target student misconceptions about how to properly measure voltage and current in simple DC circuits by letting them investigate different meter arrangements without fear of damaging equipment. These activities also are designed to lead to other investigations about simple DC circuits.

This is a calculus-based book meant for the first semester of the …

This is a calculus-based book meant for the first semester of the type of freshman survey course taken by engineering and physical science majors. A treatment of relativity is interspersed with the Newtonian mechanics, in optional sections. The book is designed so that it can be used as a drop-in replacement for the corresponding part of Simple Nature, for instructors who prefer a traditional order of topics. Simple Nature does energy before force, while Mechanics does force before energy. Simple Nature has its treatment of relativity all in a single chapter, rather than in parallel with the development of Newtonian mechanics.

No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.

Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.

Your redistributing comes with some restrictions. Do not remix or make derivative works.

Most restrictive license type. Prohibits most uses, sharing, and any changes.

Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.