Updating search results...

Search Resources

186 Results

View
Selected filters:
  • Chemistry
Advanced Inorganic Chemistry
Unrestricted Use
CC BY
Rating
0.0 stars

Advanced Inorganic Chemistry is designed to give you the knowledge to explain everyday phenomena of inorganic complexes. The student will study the various aspects of their physical and chemical properties and learn how to determine the practical applications that these complexes can have in industrial, analytical, and medicinal chemistry. Upon successful completion of this course, the student will be able to: Explain symmetry and point group theory and demonstrate knowledge of the mathematical method by which aspects of molecular symmetry can be determined; Use molecular symmetry to predict or explain the chemical properties of a molecule, such as dipole moment and allowed spectroscopic transitions; Construct simple molecular orbital diagrams and obtain bonding information from them; Demonstrate an understanding of valence shell electron pair repulsion (VSEPR), which is used for predicting the shapes of individual molecules; Explain spectroscopic information obtained from coordination complexes; Identify the chemical and physical properties of transition metals; Demonstrate an understanding of transition metal organometallics; Define the role of catalysts and explain how they affect the activation energy and reaction rate of a chemical reaction; Identify the mechanisms of both ligand substitution and redox processes in transition metal complexes; Discuss some current, real-world applications of transition metal complexes in the fields of medicinal chemistry, solar energy, electronic displays, and ion batteries. (Chemistry 202)

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
04/29/2019
Advanced Organic Chemistry
Unrestricted Use
CC BY
Rating
0.0 stars

Organic chemistry is the discipline that studies the properties and reactions of organic, carbon-based compounds. The student will begin by studying a unit on ylides, benzyne, and free radicals. Many free radicals affect life processes. For example, oxygen-derived radicals may be overproduced in cells, such as white blood cells that try to defend against infection in a living organism. Afterward the student will move into a comprehensive examination of stereochemistry, as well as the kinetics of substitution and elimination reactions. The course wraps up with a survey of various hetereocyclic structures, including their MO theory, aromaticity, and reactivity. Upon successful completion of this course, the student will be able to: Describe free radicals in terms of stability, kinetics, and bond dissociation energies; Describe the stereochemistry and orbitals involved in photochemical reactions; Describe enantiomers, diastereomers, pro-S and pro-R hydrogens, and Re/Si faces of carbonyls; Perform conformational analysis of alkanes and cyclohexanes; Describe reaction mechanisms in terms of variousparameters (i.e.,kinetics, Curtin-Hammet principle, Hammond postulate,etc.); Describe the chemistry of the heterocycles listed in Unit3 in terms of molecular orbital theory, aromaticity, and reactions. (Chemistry 201)

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
04/29/2019
Advanced Organic Chemistry, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Application of structure and theory to the study of organic reaction mechanisms: stereochemical features including conformation and stereoelectronic effects; reaction dynamics, isotope effects and molecular orbital theory applied to pericyclic and photochemical reactions; and special reactive intermediates including carbenes, carbanions, and free radicals.

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Movassaghi, Mohammad
Date Added:
01/01/2007
Advanced Seminar in Geology and Geochemistry: Organic Geochemistry, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

12.491 is a seminar focusing on problems of current interest in geology and geochemistry. For Fall 2005, the topic is organic geochemistry. Lectures and readings cover recent research in the development and properties of organic matter.

Subject:
Anatomy/Physiology
Atmospheric Science
Chemistry
Natural Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Summons, Roger
Date Added:
01/01/2005
Aeronautics and Astronautics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

These courses, produced by the Massachusetts Institute of Technology, introduce the fundamental concepts and approaches of aerospace engineering, highlighted through lectures on aeronautics, astronautics, and design. MIT˘ď‹ď_s Aerospace and Aeronautics curriculum is divided into three parts: Aerospace information engineering, Aerospace systems engineering, and Aerospace vehicles engineering. Visitors to this site will find undergraduate and graduate courses to fit all three of these areas, from Exploring Sea, Space, & Earth: Fundamentals of Engineering Design to Bio-Inspired Structures

Subject:
Applied Science
Chemistry
Engineering
Mathematics
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Date Added:
03/17/2011
Alternative Fuels from Biomass Sources
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Is climate change real? Yes, it is! And technologies to reduce Greenhouse Gas (GHG) emissions are being developed. One type of technology that is imperative in the short run is biofuels; however, biofuels must meet specifications for gasoline, diesel, and jet fuel, or catastrophic damage could occur. This course will examine the chemistry of technologies of bio-based sources for power generation and transportation fuels. We'll consider various biomasses that can be utilized for fuel generation, understand the processes necessary for biomass processing, explore biorefining, and analyze how biofuels can be used in current fuel infrastructure.

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Provider:
Penn State University
Provider Set:
Penn State's College of Earth and Mineral Sciences (http:// e-education.psu.edu/oer/)
Author:
Caroline Clifford
Date Added:
04/25/2019
Analysis of Biological Networks (BE.440), Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemical and quantitative views of the interplay of multiple pathways as biological networks are emphasized. Student work will culminate in the preparation of a unique grant application in an area of biological networks.

Subject:
Biology
Chemistry
Natural Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Essigmann, John
Sasisekharan, Ram
Date Added:
01/01/2004
Analytical Chemistry
Unrestricted Use
CC BY
Rating
0.0 stars

Analytical chemistry is the branch of chemistry dealing with measurement, both qualitative and quantitative. This discipline is also concerned with the chemical composition of samples. In the field, analytical chemistry is applied when detecting the presence and determining the quantities of chemical compounds, such as lead in water samples or arsenic in tissue samples. It also encompasses many different spectrochemical techniques, all of which are used under various experimental conditions. This branch of chemistry teaches the general theories behind the use of each instrument as well analysis of experimental data. Upon successful completion of this course, the student will be able to: Demonstrate a mastery of various methods of expressing concentration; Use a linear calibration curve to calculate concentration; Describe the various spectrochemical techniques as described within the course; Use sample data obtained from spectrochemical techniques to calculate unknown concentrations or obtain structural information where applicable; Describe the various chromatographies described within this course and analyze a given chromatogram; Demonstrate an understanding of electrochemistry and the methods used to study the response of an electrolyte through current of potential. (Chemistry 108)

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
04/29/2019
Analytical Chemistry
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Analytical chemistry spans nearly all areas of chemistry but involves the development of tools and methods to measure physical properties of substances and apply those techniques to the identification of their presence (qualitative analysis) and quantify the amount present (quantitative analysis) of species in a wide variety of settings.

Subject:
Chemistry
Physical Science
Material Type:
Textbook
Provider:
LibreTexts
Date Added:
11/12/2019
Analytical Chemistry 2.0
Unrestricted Use
CC BY
Rating
0.0 stars

Analytical chemistry is more than a collection of analytical methods and an understanding of equilibrium chemistry; it is an approach to solving chemical problems. Although equilibrium chemistry and analytical methods are important, their coverage should not come at the expense of other equally important topics. The introductory course in analytical chemistry is the ideal place in the undergraduate chemistry curriculum for exploring topics such as experimental design, sampling, calibration strategies, standardization, optimization, statistics, and the validation of experimental results. Analytical methods come and go, but best practices for designing and validating analytical methods are universal. Because chemistry is an experimental science it is essential that all chemistry students understand the importance of making good measurements.

Subject:
Chemistry
Physical Science
Material Type:
Textbook
Provider:
BCcampus
Provider Set:
BCcampus Open Textbooks
Author:
David Harvey
Date Added:
10/28/2014
Analytical Chemistry 2.1
Unrestricted Use
CC BY
Rating
0.0 stars

As currently taught in the United States, introductory courses in analytical chemistryemphasize quantitative (and sometimes qualitative) methods of analysis along with a heavydose of equilibrium chemistry. Analytical chemistry, however, is much more than a collection ofanalytical methods and an understanding of equilibrium chemistry; it is an approach to solvingchemical problems. Although equilibrium chemistry and analytical methods are important, theircoverage should not come at the expense of other equally important topics.

The introductory course in analytical chemistry is the ideal place in the undergraduate chemistry curriculum forexploring topics such as experimental design, sampling, calibration strategies, standardization,optimization, statistics, and the validation of experimental results. Analytical methods comeand go, but best practices for designing and validating analytical methods are universal. Becausechemistry is an experimental science it is essential that all chemistry students understand theimportance of making good measurements.

My goal in preparing this textbook is to find a more appropriate balance between theoryand practice, between “classical” and “modern” analytical methods, between analyzing samplesand collecting samples and preparing them for analysis, and between analytical methods anddata analysis. There is more material here than anyone can cover in one semester; it is myhope that the diversity of topics will meet the needs of different instructors, while, perhaps,suggesting some new topics to cover.

Subject:
Chemistry
Physical Science
Material Type:
Textbook
Provider:
DePauw University
Author:
David Harvey
Date Added:
06/20/2016
Analytical Chemistry Lab
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Analytical Chemistry Lab includes nine experiments to guide students in basic laboratory techniques related to the topics in Analytical Chemistry. This resource is designed to support a sophomore level specialized science course intentionally designed for students who are chemistry majors, medical laboratory science majors, or those biology majors who are having chemistry as a minor degree.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Author:
Gerard Dumancas
Date Added:
01/08/2021
Analytical Chemistry Lab Syllabus
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Syllabus for Analytical Chemistry Lab, a sophomore level specialized science course intentionally designed for students who are chemistry majors, medical laboratory science majors, or those biology majors who are having chemistry as a minor degree.

Subject:
Chemistry
Material Type:
Syllabus
Author:
Gerard Dumancas
Date Added:
02/01/2021
Analytical Chemistry Lecture
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to techniques and practices of analytical chemistry. Topics will include: statistics, gravimetry, equilibrium, titration, spectroscopy, electrochemistry, chromatography. This resource is designed to support a sophomore level specialized science course intentionally designed for students who are chemistry majors, medical laboratory science majors, or those biology majors who are having chemistry as a minor degree.

Subject:
Chemistry
Physical Science
Material Type:
Textbook
Author:
John Allen
Gerard Dumancas
Date Added:
01/08/2021
Analytical Chemistry Lecture Syllabus
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Syllabus for Analytical Chemistry Lecture, which provides an introduction to techniques and practices of analytical chemistry. Topics will include: statistics, gravimetry, equilibrium, titration, spectroscopy, electrochemistry, chromatography. This resource is designed to support a sophomore level specialized science course intentionally designed for students who are chemistry majors, medical laboratory science majors, or those biology majors who are having chemistry as a minor degree.

Subject:
Chemistry
Material Type:
Syllabus
Author:
Gerard Dumancas
Date Added:
01/21/2021
Ancillary Resources for OpenStax Chemistry, CHEM 1211 and 1212
Unrestricted Use
CC BY
Rating
0.0 stars

This open course with a new set of ancillary materials for OpenStax Chemistry was created under a Round Eleven Mini-Grant for Ancillary Materials Creation and Revision. The materials created in order to support faculty implementing OpenStax Psychology in the classroom include:

Lecture Slides
Chapter Checklists
Practice Problems
Newly-Created Videos

Along with these resources, the open course also contains a laboratory section with new instructional videos, a laboratory notebook and a sample notebook with responses, and experiments for each course.

Subject:
Chemistry
Physical Science
Material Type:
Homework/Assignment
Lecture
Author:
Erin Kingston
Georgia Highlands College
Sarah Tesar
Allen Easton
Date Added:
01/28/2021
Aquatic Chemistry, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course details the quantitative treatment of chemical processes in aquatic systems such as lakes, oceans, rivers, estuaries, groundwaters, and wastewaters. It includes a brief review of chemical thermodynamics that is followed by discussion of acid-base, precipitation-dissolution, coordination, and reduction-oxidation reactions. Emphasis is on equilibrium calculations as a tool for understanding the variables that govern the chemical composition of aquatic systems and the fate of inorganic pollutants.

Subject:
Applied Science
Chemistry
Environmental Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Moffett, Jim
Seewald, Jeff
Tivey, Meg
Date Added:
01/01/2005
Atmospheric Physics and Chemistry, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides an introduction to the physics and chemistry of the atmosphere, including experience with computer codes. It is intended for undergraduates and first year graduate students.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Mcrae, Gregory
Date Added:
01/01/2006
The Basics of General, Organic, and Biological Chemistry
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Basics of General, Organic, and Biological Chemistry by David W. Ball, John W. Hill, and Rhonda J. Scott is for the one-semester General, Organic and Biological Chemistry course. The authors designed this textbook from the ground up to meet the needs of a one-semester course. It is 20 chapters in length and approximately 350-400 pages; just the right breadth and depth for instructors to teach and students to grasp.

In addition, The Basics of General, Organic, and Biological Chemistry is written not by one chemist, but THREE chemistry professors with specific, complimentary research and teaching areas. David W. Ball's specialty is physical chemistry, John W. Hill's is organic chemistry, and finally, Rhonda J. Scott's background is in enzyme and peptide chemistry. These three authors have the expertise to identify and present only the most important material for students to learn in the GOB Chemistry course.

These experienced authors have ensured their text has ample in-text examples, and ”Test Yourself“ questions following the examples so students can immediately check their comprehension. The end-of-chapter exercises will be paired, with one answered in the back of the text so homework can easily be assigned and self-checked.

The Basics of General, Organic, and Biological Chemistry by David W. Ball, John W. Hill, and Rhonda J. Scott is the right text for you and your students if you are looking for a GOB textbook with just the right amount of coverage without overdoing the concepts and overwhelming your students.

Subject:
Chemistry
Physical Science
Material Type:
Textbook
Author:
David Ball
John Hill
Rhonda Scott
About The Contributors
Date Added:
05/30/2019
Be Prepared! Everything you should know for 1st year Chemistry
Unrestricted Use
CC BY
Rating
0.0 stars

These Pre-Chemistry online modules are designed to function as chemistry preparation for first year chemistry students. It is particularly useful for students who, for various reasons, are otherwise not confident in their preparation for first year university level chemistry. However, the module can be used as a practical and valuable review for all students. The module focuses on the development of fundamental numeracy and problem solving skills that are widely applicable to students in a variety of first year chemistry courses including those directed to students in life science, engineering and natural and physical sciences. These modules function effectively in both online, hybrid or even as preparation for entirely traditionally delivered courses.

Module Learning Objectives:
Following successful completion of the module, students will be able to:

1) Demonstrate fluency, through interactive problem sets and quizzes, in describing experimental data in chemistry with clear understanding of the concepts – variance, significance, precision and accuracy.
2) Consistently develop responsive approaches to solving qualitative and quantitative problems using robust problem-solving skills, including unit analysis and problem visualization.
3) Apply mathematical functions fluidly and flexibly for expressing very large and small numbers using both linear and exponential scales.

Table of Contents:

I. Module 1
1. Scientific Measurements
2. Presenting Chemical Data
3. Chemical Problem Solving Strategies
4. Summary

II. Module 2
5. Modern Atomic Theory
6. Building the World
7. Transformations of Matter
8. Summary

Subject:
Chemistry
Physical Science
Material Type:
Module
Textbook
Author:
Andrew Vreugdenhil
Kelly Wright
Date Added:
11/30/2020