This book began as lecture notes for an Oregon State University course …
This book began as lecture notes for an Oregon State University course in fluid mechanics, designed for beginning graduate students in physical oceanography. Because of its fundamental nature, this course is often taken by students outside physical oceanography, e.g., atmospheric science, civil engineering, physics and mathematics. In later courses, the student will discover esoteric fluid phenomena such as internal waves that propagate through the sky, water phase changes that govern clouds, and planetary rotation effects that control large-scale winds and ocean currents. In contrast, this course concerns phenomena that we have all been familiar with since childhood: flows you see in sinks and bathtubs, in rivers, and at the beach. In this context, we develop the mathematical techniques and scientific reasoning skills needed for higher-level courses and professional research. Prerequisites are few: basic linear algebra, differential and integral calculus and Newton’s laws of motion. As we go along we discover the need for the more advanced tools of tensor analysis.
This is a laboratory course supplemented by lectures that focus on selected …
This is a laboratory course supplemented by lectures that focus on selected analytical facilities that are commonly used to determine the mineralogy, elemental abundance and isotopic ratios of Sr and Pb in rocks, soils, sediments and water.
This course details the quantitative treatment of chemical processes in aquatic systems …
This course details the quantitative treatment of chemical processes in aquatic systems such as lakes, oceans, rivers, estuaries, groundwaters, and wastewaters. It includes a brief review of chemical thermodynamics that is followed by discussion of acid-base, precipitation-dissolution, coordination, and reduction-oxidation reactions. Emphasis is on equilibrium calculations as a tool for understanding the variables that govern the chemical composition of aquatic systems and the fate of inorganic pollutants.
We are happy to welcome you to our second Open Educational Resource …
We are happy to welcome you to our second Open Educational Resource (OER) textbook, Biochemistry Free For All. Biochemistry is a relatively young science, but its rate of growth has been truly impressive. The rapid pace of discoveries, which shows no sign of slowing, is reflected in the steady increase in the size of biochemistry textbooks. Growing faster than the size of biochemistry books have been the skyrocketing costs of higher education and the even faster rising costs of college textbooks. These unfortunate realities have created a situation where the costs of going to college are beyond the means of increasing numbers of students.
Biology 2e is designed to cover the scope and sequence requirements of a …
Biology 2e is designed to cover the scope and sequence requirements of a typical two-semester biology course for science majors. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology includes rich features that engage students in scientific inquiry, highlight careers in the biological sciences, and offer everyday applications. The book also includes various types of practice and homework questions that help students understand—and apply—key concepts. The 2nd edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Art and illustrations have been substantially improved, and the textbook features additional assessments and related resources.
By the end of this section, you will be able to do …
By the end of this section, you will be able to do the following:
Define biogeography List and describe abiotic factors that affect the global distribution of plant and animal species Compare the impact of abiotic forces on aquatic and terrestrial environments Summarize the effects of abiotic factors on net primary productivity
By the end of this section, you will be able to do …
By the end of this section, you will be able to do the following:
Describe the properties of water that are critical to maintaining life Explain why water is an excellent solvent Provide examples of water’s cohesive and adhesive properties Discuss the role of acids, bases, and buffers in homeostasis
The course considers the growing popularity of sustainability and its implications for …
The course considers the growing popularity of sustainability and its implications for the practice of engineering, particularly for the built environment. Two particular methodologies are featured: life cycle assessment (LCA) and Leadership in Energy and Environmental Design (LEED). The fundamentals of each approach will be presented. Specific topics covered include water and wastewater management, energy use, material selection, and construction.
The course provides the technological background of treatment processes applied for production …
The course provides the technological background of treatment processes applied for production of drinking water. Treatment processes are demonstrated with laboratory experiments.
Rapid changes at Earth's surface, largely in response to human activity, have …
Rapid changes at Earth's surface, largely in response to human activity, have led to the realization that fundamental questions remain to be answered regarding the natural functioning of the Critical Zone, the thin veneer at Earth's surface where the atmosphere, lithosphere, hydrosphere and biosphere interact. EARTH 530 will introduce you to the basics necessary for understanding Earth surface processes in the Critical Zone through an integration of various scientific disciplines. Those who successfully complete EARTH 530 will be able to apply their knowledge of fundamental concepts of Earth surface processes to understanding outstanding fundamental questions in Critical Zone science and how their lives are intimately linked to Critical Zone health.
A survey of how America has become the world's largest consumer of …
A survey of how America has become the world's largest consumer of energy. Explores American history from the perspective of energy and its relationship to politics, diplomacy, the economy, science and technology, labor, culture, and the environment. Topics include muscle and water power in early America, coal and the Industrial Revolution, electrification, energy consumption in the home, oil and US foreign policy, automobiles and suburbanization, nuclear power, OPEC and the 70's energy crisis, global warming, and possible paths for the future.
Do energy and sustainability issues capture your attention? Do you find yourself …
Do energy and sustainability issues capture your attention? Do you find yourself seeking out articles, books, and/or movies related to these topics? After learning about core energy and sustainability issues, as well as information source evaluation and rhetorical analysis, students in EM SC 240 get the opportunity to explore and critically evaluate selected media from contemporary culture that focus on topics related to energy and sustainability. These media selections will relate specifically to earth, material, and energy processes and how humans interact with them. Students will evaluate the energy and sustainability subject matter from both scientific and cultural perspectives, with special emphasis on the need to sustain a viable planetary life support system.
For the first time in history, the global demand for freshwater is …
For the first time in history, the global demand for freshwater is overtaking its supply in many parts of the world. The U.N. predicts that by 2025, more than half of the countries in the world will be experiencing water stress or outright shortages. Lack of water can cause disease, food shortages, starvation, migrations, political conflict, and even lead to war. Models of cooperation, both historic and contemporary, show the way forward. The first half of the course details the multiple facets of the water crisis. Topics include water systems, water transfers, dams, pollution, climate change, scarcity, water conflict/cooperation, food security, and agriculture. The second half of the course describes innovative solutions: Adaptive technologies and adaptation through policy, planning, management, economic tools, and finally, human behaviors required to preserve this precious and imperiled resource. Several field trips to water/wastewater/biosolids reuse and water-energy sites will help us to better comprehend both local and international challenges and solutions.
Geography 430 is an active, creative learning community focused around understanding the …
Geography 430 is an active, creative learning community focused around understanding the changing relationships between people and their environments, the causes and consequences of environmental degradation, strategies for building a more sustainable world, and the methods and approaches that scholars have used to understand human-environment interactions. The primary course objectives are to help geographers, earth scientists, and other professionals to deepen their appreciation for the complexity of human-environment systems and to develop skills that allow them to interpret, analyze, and communicate effectively regarding human-environment interactions in their lives as students, professionals, and citizens.
Lesson 0 - Orientation and Syllabus Lesson 1 - Global Environmental Change and Planetary Boundaries Lesson 2 - Complex Social-Ecological Systems Lesson 3 - Governance Lesson 4 - Environmental Justice Lesson 5 - The Food-Energy-Water Nexus Lesson 6 - Food Lesson 7 - Energy Lesson 8 - Water Lesson 9 - Biodiversity Conservation Lesson 10 - Land Use Change Lesson 11 - Climate Change
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.