Frameworks and Models for Technology and Policy students explore perspectives in the …
Frameworks and Models for Technology and Policy students explore perspectives in the policy process -- agenda setting, problem definition, framing the terms of debate, formulation and analysis of options, implementation and evaluation of policy outcomes using frameworks including economics and markets, law, and business and management. Methods include cost/benefit analysis, probabilistic risk assessment, and system dynamics. Exercises for Technology and Policy students include developing skills to work on the interface between technology and societal issues; simulation exercises; case studies; and group projects that illustrate issues involving multiple stakeholders with different value structures, high levels of uncertainty, multiple levels of complexity; and value trade-offs that are characteristic of engineering systems. Emphasis on negotiation, team building and group dynamics, and management of multiple actors and leadership. This course explores perspectives in the policy process - agenda setting, problem definition, framing the terms of debate, formulation and analysis of options, implementation and evaluation of policy outcomes using frameworks including economics and markets, law, and business and management. Methods include cost/benefit analysis, probabilistic risk assessment, and system dynamics. Exercises include developing skills to work on the interface between technology and societal issues; simulation exercises; case studies; and group projects that illustrate issues involving multiple stakeholders with different value structures, high levels of uncertainty, multiple levels of complexity; and value trade-offs that are characteristic of engineering systems. Emphasis on negotiation, team building and group dynamics, and management of multiple actors and leadership.
1.201J/11.545J/ESD.210J is required for all first-year Master of Science in Transportation students. …
1.201J/11.545J/ESD.210J is required for all first-year Master of Science in Transportation students. It would be of interest to, as well as accessible to, students in Urban Studies and Planning, Political Science, Technology and Policy, Management, and various engineering departments. It is a good subject for those who plan to take only one subject in transportation and serves as an entry point to other transportation subjects as well. The subject focuses on fundamental principles of transportation systems, introduces transportation systems components and networks, and addresses how one invests in and operates them effectively. The tie between transportation and related systems is emphasized.
This course is a required sophomore subject in the Department of Materials …
This course is a required sophomore subject in the Department of Materials Science and Engineering, designed to be taken in conjunction with the core lecture subject 3.012 Fundamentals of Materials Science and Engineering. The laboratory subject combines experiments illustrating the principles of quantum mechanics, thermodynamics and structure with intensive oral and written technical communication practice. Specific topics include: experimental exploration of the connections between energetics, bonding and structure of materials, and application of these principles in instruments for materials characterization; demonstration of the wave-like nature of electrons; hands-on experience with techniques to quantify energy (DSC), bonding (XPS, AES, FTIR, UV/vis and force spectroscopy), and degree of order (x-ray scattering) in condensed matter; and investigation of structural transitions and structure-property relationships through practical materials examples.
Parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming …
Parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming at fundamental understanding and descriptive tools for energy and heat transport processes from nanoscale continuously to macroscale. Topics include the energy levels, the statistical behavior and internal energy, energy transport in the forms of waves and particles, scattering and heat generation processes, Boltzmann equation and derivation of classical laws, deviation from classical laws at nanoscale and their appropriate descriptions, with applications in nano- and microtechnology.
Infrastructures for energy, water, transport, information and communications services create the conditions …
Infrastructures for energy, water, transport, information and communications services create the conditions for livability and economic development. They are the backbone of our society. Similar to our arteries and neural systems that sustain our human bodies, most people however take infrastructures for granted. That is, until they break down or service levels go down.
In many countries around the globe infrastructures are ageing. They require substantial investments to meet the challenges of increasing population, urbanization, resource scarcity, congestion, pollution, and so on. Infrastructures are vulnerable to extreme weather events, and therewith to climate change. Technological innovations, such as new technologies to harvest renewable energy, are one part of the solution. The other part comes from infrastructure restructuring. Market design and regulation, for example, have a high impact on the functioning and performance of infrastructures.
This book is designed as an OER text and learning resource for …
This book is designed as an OER text and learning resource for undergraduate students enrolled in FN 225 Nutrition at Lane Community College in Eugene, Oregon. The book covers basic nutrition and metabolism, information literacy, energy balance, nutrition across life stages, dietary supplements, an in-depth look at each of the macronutrients, and major functions of vitamins and minerals.
EMSC 302 provides an orientation of the Energy and Sustainability Policy (ESP) …
EMSC 302 provides an orientation of the Energy and Sustainability Policy (ESP) degree program, preparing students for further study in the five program learning outcome areas: energy industry knowledge, global perspective, analytical skills, communication skills, and sustainability ethics. It also provides an introduction to the basic skills necessary to be successful in higher-ed online learning, including communication and library skills.
A second semester introductory physics course for life sciences students that looks …
A second semester introductory physics course for life sciences students that looks to deepen students' understanding of biology and chemistry through physics all through the lens of understanding two of the most fundamental particles in the Universe: electrons and photons. The book begins with exploring the quantum mechanical nature of these objects to expand on what students have learned in chemistry and then proceeds to geometric optics (using the human eye as a theme), electrostatics (using membrane potentials), circuits (using the neuron), and finally synthesizing everything in a unit exploring the meaning of "light is an electromagnetic wave."
This video describes the ecological footprint and its limitation. It goes into …
This video describes the ecological footprint and its limitation. It goes into some depth on the computation on the footprint and what it means for the global population. This video is part of the Sustainability Learning Suites, made possible in part by a grant from the National Science Foundation. See 'Learn more about this resource' for Learning Objectives and Activities.
1. Introduction to Process Intensification (PI): - sustainability-related issues in process industry; …
1. Introduction to Process Intensification (PI): - sustainability-related issues in process industry; - definitions of Process Intensification; - fundamental principles and approaches of PI.
2. How to design a sustainable, inherently safer processing plant - presentation of PI case study assignments.
3. PI Approaches: - STRUCTURE - PI approach in spatial domain (incl. "FOCUS ON" guest lecture) - ENERGY - PI approach in thermodynamic domain - SYNERGY - PI approach in functional domain - TIME - PI approach in temporal domain Study Goals Basic knowledge in Process Intensification
This course will start with a survey of basic oxygen radical biochemistry …
This course will start with a survey of basic oxygen radical biochemistry followed by a discussion of the mechanisms of action of cellular as well as dietary antioxidants. After considering the normal physiological roles of oxidants, we will examine the effects of elevated ROS and a failure of cellular redox capacity on the rate of organismal and cellular aging as well as on the onset and progression of several major diseases that are often age-related. Topics will include ROS-induced effects on stem cell regeneration, insulin resistance, heart disease, neurodegenerative disorders, and cancer. The role of antioxidants in potential therapeutic strategies for modulating ROS levels will also be discussed.This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.
Advanced semiconductor devices are a new source of energy for the 21st …
Advanced semiconductor devices are a new source of energy for the 21st century, delivering electricity directly from sunlight. Suitable semiconductor materials, device physics, and fabrication technologies for solar cells are presented in this course. The guidelines for design of a complete solar cell system for household application are explained. Cost aspects, market development, and the application areas of solar cells are presented.
Are you interested in Solar Energy? Solar Resource Assessment and Economics explores …
Are you interested in Solar Energy? Solar Resource Assessment and Economics explores the methods, economic criteria, and meteorological background for assessing the solar resource with respect to project development of solar energy conversion systems for stakeholders in a given locale. It provides students with an in-depth exploration of the physical qualities of the solar resource, estimation of the fractional contributions of irradiance to total demand, and economic assessment of the solar resource. The course utilizes real data sets and resources to provide students context for the drivers, frameworks, and requirements of solar energy evaluation.
This set of videos and study guides for OpenStax Biology was created …
This set of videos and study guides for OpenStax Biology was created under an ALG Mini-Grant for Ancillary Materials Creation and Revision. Two videos on energy coupling and osmosis are included, along with study guides for chapters 5-8:
Plasma Membrane Metabolism Cellular Respiration All files are included in one .zip folder.
The primary goal of this course is to provide a toolset for …
The primary goal of this course is to provide a toolset for characterizing and strategizing how nonmarket forces can shape current and future renewable energy markets. The course approaches the exploration and explanation of key concepts in renewable energy and sustainability nonmarket strategies through evidence-based examples. Main topics for the course include: a sociological approach to markets, renewable energy markets, nonmarket conditions, complex systems analysis, and renewable energy technology and business environments. Because renewable energy costs are higher than fossil fuel cost per unit of energy, the main arguments in support of renewable energy, thus far, are functionally nonmarket in character, i.e., environmental (e.g., climate change), political (e.g., energy independence), and/ or social (e.g., good stewardship).
This workshop investigates the current state of sustainability in regards to architecture, …
This workshop investigates the current state of sustainability in regards to architecture, from the level of the tectonic detail to the urban environment. Current research and case studies will be investigated, and students will propose their own solutions as part of the final project.
A transition to sustainable energy is needed for our climate and welfare. …
A transition to sustainable energy is needed for our climate and welfare. In this engineering course, you will learn how to assess the potential for energy reduction and the potential of renewable energy sources like wind, solar and biomass. You’ll learn how to integrate these sources in an energy system, like an electricity network and take an engineering approach to look for solutions and design a 100% sustainable energy system.
This course aims to give insight in the chain of hydrogen production, …
This course aims to give insight in the chain of hydrogen production, storage and use, and the devices involved. Electrical storage in the form of batteries will be discussed. Physical and materials science advances that are required to bring forward hydrogen and batteries as energy carriers will be highlighted.
EME 807 overviews a wide range of contemporary technologies in the context …
EME 807 overviews a wide range of contemporary technologies in the context of sustainability and examines metrics for their assessment. The course explores the main principles that guide modern science and technology towards sustainable solutions. It covers such topics as resource management technologies, waste and wastewater treatment, renewable energy technologies, high performance buildings and transportation systems, application of informatics and feedback to sustainable systems, and more. Learning in EME 807 heavily relies on real-life examples and taps into current practices of technology analysis. This course goes beyond understanding the background, fostering critical thinking and challenging the students to draw connections between social, environmental, and economic aspects of sustainable technologies.
This course deals with the transfer of work, energy, and material via …
This course deals with the transfer of work, energy, and material via gases and liquids. These fluids may undergo changes in temperature, pressure, density, and chemical composition during the transfer process and may act on or be acted on by external systems. Engineers must fully understand these processes in order to analyze, troubleshoot, or improve existing processes and/or innovate and design new ones. Upon successful completion of this course, the student will be able to: Interpret and use scientific notation and engineering units for the description of fluid flow and energy transfer; Interpret measurements of thermodynamic quantities for description of fluid flow and energy transfer; Use concepts of continuum fluid dynamics to interpret physical situations; Determine the interrelationship of variables in pumping and piping operations; Analyze heat-exchanger performance and understand design considerations; Apply thermodynamics to the analysis of energy conversion and cooling/heating situations; Communicate technical information in written and graphical form. (Mechanical Engineering 303)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.