The biology material in these PowerPoint presentations comes from an OER (Open …
The biology material in these PowerPoint presentations comes from an OER (Open Education Resource) textbook. The textbook is Concepts of Biology, by Rice University. The textbook can be found on the following website under the subject of science: https://openstax.org/
These are the same PowerPoints as the Concepts of Biology textbook PowerPoints, …
These are the same PowerPoints as the Concepts of Biology textbook PowerPoints, but saved in the PDF format, which is often used for online and hybrid courses. They cannot be modified. If you need to modify the PowerPoints, use the Concepts of Biology textbook PowerPoints version, modify them, and re-save them as a PDF.
These are simple worksheets created using the vocabulary words found at the …
These are simple worksheets created using the vocabulary words found at the end of each chapter of the Concepts of Biology by Rice University textbook. They can be modified and can by used as homework assignments, in class activities, extra credit assignments, etc.
Terminology Matching Key is available upon request. Use the Help Center to open a new support ticket to request this.
" This design course targets the solution of clinical problems by use …
" This design course targets the solution of clinical problems by use of implants and other medical devices. Topics include the systematic use of cell-matrix control volumes; the role of stress analysis in the design process; anatomic fit, shape and size of implants; selection of biomaterials; instrumentation for surgical implantation procedures; preclinical testing for safety and efficacy, including risk/benefit ratio assessment evaluation of clinical performance and design of clinical trials. Student project materials are drawn from orthopedic devices, soft tissue implants, artificial organs, and dental implants."
" This is an advanced course on modeling, design, integration and best …
" This is an advanced course on modeling, design, integration and best practices for use of machine elements such as bearings, springs, gears, cams and mechanisms. Modeling and analysis of these elements is based upon extensive application of physics, mathematics and core mechanical engineering principles (solid mechanics, fluid mechanics, manufacturing, estimation, computer simulation, etc.). These principles are reinforced via (1) hands-on laboratory experiences wherein students conduct experiments and disassemble machines and (2) a substantial design project wherein students model, design, fabricate and characterize a mechanical system that is relevant to a real world application. Students master the materials via problems sets that are directly related to, and coordinated with, the deliverables of their project. Student assessment is based upon mastery of the course materials and the student's ability to synthesize, model and fabricate a mechanical device subject to engineering constraints (e.g. cost and time/schedule)."
" In this class, students engage in independent research projects to probe …
" In this class, students engage in independent research projects to probe various aspects of the physiology of the bacteriumĺĘPseudomonas aeruginosa PA14, an opportunistic pathogen isolated from the lungs of cystic fibrosis patients. Students use molecular genetics to examine survival in stationary phase, antibiotic resistance, phase variation, toxin production, and secondary metabolite production. Projects aim to discover the molecular basis for these processes using both classical and cutting-edge techniques. These include plasmid manipulation, genetic complementation, mutagenesis, PCR, DNA sequencing, enzyme assays, and gene expression studies. Instruction and practice in written and oral communication are also emphasized. WARNING NOTICE The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear the sole responsibility, liability, and risk for the implementation of such safety procedures and measures. MIT shall have no responsibility, liability, or risk for the content or implementation of any of the material presented. Legal Notice "
" During development, the genetic content of each cell remains, with a …
" During development, the genetic content of each cell remains, with a few exceptions, identical to that of the zygote. Most differentiated cells therefore retain all of the genetic information necessary to generate an entire organism. It was through pioneering technology of somatic cell nuclear transfer (SCNT) that this concept was experimentally proven. Only 10 years ago the sheep Dolly was the first mammal to be cloned from an adult organism, demonstrating that the differentiated state of a mammalian cell can be fully reversible to a pluripotent embryonic state. A key conclusion from these experiments was that the difference between pluripotent cells such as embryonic stem (ES) cells and unipotent differentiated cells is solely a consequence of reversible changes. These changes, which have proved to involve reversible alterations to both DNA and to proteins that bind DNA, are known as epigenetic, to distinguish them from genetic alterations to DNA sequence. In this course we will explore such epigenetic changes and study different approaches that can return a differentiated cell to an embryonic state in a process referred to as epigenetic reprogramming, which will ultimately allow generation of patient-specific stem cells and application to regenerative therapy. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching."
Since the discovery of the structure of the DNA double helix in …
Since the discovery of the structure of the DNA double helix in 1953 by Watson and Crick, the information on detailed molecular structures of DNA and RNA, namely, the foundation of genetic material, has expanded rapidly. This discovery is the beginning of the "Big Bang" of molecular biology and biotechnology. In this seminar, students discuss, from a historical perspective and current developments, the importance of pursuing the detailed structural basis of genetic materials.
Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, …
Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, genetics, and recombinant DNA. These principles are necessary to understanding the basic mechanisms of life and anchor the biological knowledge that is required to understand many of the challenges in everyday life, from human health and disease to loss of biodiversity and environmental quality.
An integrated course stressing the principles of biology. Life processes are examined …
An integrated course stressing the principles of biology. Life processes are examined primarily at the molecular and cellular levels. Intended for students majoring in biology or for non-majors who wish to take advanced biology courses.
BI102: Survey of Molecular Life and Genetics is intended for one term …
BI102: Survey of Molecular Life and Genetics is intended for one term of the introductory biology course for non-science majors taught at many two- and four-year colleges. The concepts of genetics, as they apply to the study of life, are introduced, including the principles of inheritance, genetics, and gene regulation.
This textbook incorporates the mandates found in Vision and Change and focuses on the non-content aspects of biology education that are just as important. Additionally, this book explicitly teaches the general education outcomes that we have identified as important for this class. This textbook pulls together biology content resources that are accessible for our community college non-major biology students, as well as resources to provide them with explicit instruction in the quantitative literacy, communication, and information literacy general education outcomes as they relate to the biology content they are learning.
Table of Contents I. Reference Information II. The Process of Science III. Themes and Concepts of Biology IV. Cell Structure and Function V. Membranes and movement of molecules VI. Enzyme-catalyzed reactions VII. How cells obtain energy VIII. Photosynthesis
BI102A is a survey course that introduces the discipline of molecular biology …
BI102A is a survey course that introduces the discipline of molecular biology and genetics, exploring topics including cell division, protein production, inheritance and gene regulation. This book focuses on putting those topics into an appropriate context for students who are not biology majors. Order a print copy: http://www.lulu.com/content/paperback-book/general-biology-ii-survey-of-molecular-life-and-genetics/23678587
Deals with the specific functions of neurons, the interactions of neurons in …
Deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior, by functional analysis of mutations and molecular analysis of their genes. Concentrates on work with nematodes, fruit flies, mice, and humans.
Genetics is the branch of biology that studies the means by which …
Genetics is the branch of biology that studies the means by which traits are passed on from one generation to the next and the causes of similarities and differences between related individuals. In this course, the student will take a close look at chromosomes, DNA, and genes. The student will learn how hereditary information is transferred, how it can change, how it can lead to human disease and be tested to indicate disease, and much more. Upon successful completion of this course, students will be able to: give a brief synopsis of the history of genetics by explaining the fundamental genetic concepts covered in this course as they were discovered through time; identify the links between Mendel's discoveries (often represented by Punnett squares) with mitosis and meiosis, dominance, penetrance, and linkage; recognize the role of simple probability in genetic inheritance; apply advanced genetic concepts, including genetic mapping and transposons, to practical applications, including pedigree analysis and corn kernel color; identify the cause behind several genetic diseases currently prevalent in society (such as color blindness and hemophilia) and recognize the importance of genetic illness throughout history; compare and contrast advanced concepts of chromosomal, bacterial, human, and population genetics; recognize the similarities and differences between nuclear, chloroplast, and mitochondrial DNA; describe the fundamentals of population genetics, calculate gene frequencies in a give scenario, predict future gene frequencies over future generations, and define the role of evolution in gene frequency shift over time; recall, analyze, synthesize, and build on the foundational material to then learn the cutting-edge technological advances in genetics, including genomics, population and evolutionary genetics, and QTL mapping. (Biology 305)
This textbook provides an introduction to plant genetics and biotechnology for the …
This textbook provides an introduction to plant genetics and biotechnology for the advancement of agriculture. A clear and structured introduction to the topic for learners new to the field of genetics, the book includes: an introduction to the life cycle of the cell, DNA and how it relates to genes and chromosomes, DNA analysis, recombinant DNA, biotechnology, and transmission genetics.
Genetics Construction Kit is a simulation of a classic Mendelian genetics laboratory. …
Genetics Construction Kit is a simulation of a classic Mendelian genetics laboratory. It provides students with a set of organisms with unknown patterns of inheritance, and gives them the tools to design and perform a series of experiments to discover these inheritance patterns.Students will be able to cross the unknown organisms and analyze their crosses in ways much like those used by practicing scientists.GCK provides several tools for analyzing and organizing data: * Vial Summary Chart summarizes the contents of a vial or set of vials * Cross Matrix records the crosses made so far and indexes the vials generated by these crosses * Chi Squared Worksheet allows students to test whether observed numbers differ significantly from the ratio expected under a given hypothesis.GCK comes with several predefined problems designed to present a different aspect of genetics or to illustrate a particular problem. In addition, by using the problem editing utility, it is possible to customize a problem to meet your specific needs.
The principles of genetics with application to the study of biological function …
The principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. Structure and function of genes, chromosomes and genomes. Biological variation resulting from recombination, mutation, and selection. Population genetics. Use of genetic methods to analyze protein function, gene regulation and inherited disease.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.