Presents the anatomy, physiology, biochemistry, biophysics, and bioengineering of the gastrointestinal tract …
Presents the anatomy, physiology, biochemistry, biophysics, and bioengineering of the gastrointestinal tract and associated pancreatic, liver, and biliary systems. Emphasis on the molecular and pathophysiological basis of disease where known. Covers gross and microscopic pathology and clinical aspects. Formal lectures given by core faculty, with some guest lectures by local experts. Selected seminars conducted by students with supervision of faculty. Permission of instructor required. (Only HST students may register under HST.120, graded P/D/F.) The most recent knowledge of the anatomy, physiology, biochemistry, biophysics, and bioengineering of the gastrointestinal tract and the associated pancreatic, liver and biliary tract systems is presented and discussed. Gross and microscopic pathology and the clinical aspects of important gastroenterological diseases are then presented, with emphasis on integrating the molecular, cellular and pathophysiological aspects of the disease processes to their related symptoms and signs.
An integrated course stressing the principles of biology. Life processes are examined …
An integrated course stressing the principles of biology. Life processes are examined primarily at the molecular and cellular levels. Intended for students majoring in biology or for non-majors who wish to take advanced biology courses.
Examines the development of computing techniques and technology in the nineteenth and …
Examines the development of computing techniques and technology in the nineteenth and twentieth centuries, particularly critical evaluation of how the very idea of "computer" changes and evolves over time. Emphasis is on technical innovation, industrial development, social context, and the role of government. Topics include Babbage, Hollerith, differential analyzers, control systems, ENIAC, radar, operations research, computers as scientific instruments, the rise of "computer science," artificial intelligence, personal computers, and networks. Includes class visits by members of the MIT community who have made important historical contributions. This course focuses on one particular aspect of the history of computing: the use of the computer as a scientific instrument. The electronic digital computer was invented to do science, and its applications range from physics to mathematics to biology to the humanities. What has been the impact of computing on the practice of science? Is the computer different from other scientific instruments? Is computer simulation a valid form of scientific experiment? Can computer models be viewed as surrogate theories? How does the computer change the way scientists approach the notions of proof, expertise, and discovery? No comprehensive history of scientific computing has yet been written. This seminar examines scientific articles, participants' memoirs, and works by historians, sociologists, and anthropologists of science to provide multiple perspectives on the use of computers in diverse fields of physical, biological, and social sciences and the humanities. We explore how the computer transformed scientific practice, and how the culture of computing was influenced, in turn, by scientific applications.
" This seminar has three purposes. One, it inquires into the causes …
" This seminar has three purposes. One, it inquires into the causes of military innovation by examining a number of the most outstanding historical cases. Two, it views military innovations through the lens of organization theory to develop generalizations about the innovation process within militaries. Three, it uses the empirical study of military innovations as a way to examine the strength and credibility of hypotheses that organization theorists have generated about innovation in non-military organizations."
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover …
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover …
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), developmental biology, neurobiology and evolution.Biological function at the molecular level is particularly emphasized in all courses and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.
" This seminar is designed to be an experimental and hands-on approach …
" This seminar is designed to be an experimental and hands-on approach to applied chemistry (as seen in cooking). Cooking may be the oldest and most widespread application of chemistry and recipes may be the oldest practical result of chemical research. We shall do some cooking experiments to illustrate some chemical principles, including extraction, denaturation, and phase changes."
With the Genetics Tool, you can: * Cross two organisms * Self-cross …
With the Genetics Tool, you can: * Cross two organisms * Self-cross one organism * Create mutant versions of one organismWith the Biochemistry Tool, you can: * Look at the structures and colors of the pigment proteins found in one organism * Design proteins and observe their shapes and colors * Compare the amino acid sequences of different pigment proteinsWith the Molecular Biology Tool, you can: * Look at the DNA, mRNA and protein sequences of pigment protein genes * Design genes and observe the colors of the resulting proteins by editing the top DNA strand * Compare the DNA sequences of different pigment protein genes * Create new organisms by specifying their DNA sequences
"This course provides an introduction to the chemistry of biological, inorganic, and …
"This course provides an introduction to the chemistry of biological, inorganic, and organic molecules.ĺĘTheĺĘemphasis isĺĘon basic principles of atomic and molecular electronic structure, thermodynamics, acid-base and redox equilibria, chemical kinetics, and catalysis. In an effort to illuminate connections between chemistry and biology, a list of the biology-, medicine-, and MIT research-related examples used in 5.111 is provided in Biology-Related Examples. Acknowledgements Development and implementation of the biology-related materials in this course were funded through an HHMI Professors grant to Prof. Catherine L. Drennan."
An introduction to pharmacology. Topics include mechanisms of drug action, dose-response relations, …
An introduction to pharmacology. Topics include mechanisms of drug action, dose-response relations, pharmacokinetics, drug delivery systems, drug metabolism, toxicity of pharmacological agents, drug interactions, and substance abuse. Selected agents and classes of agents examined in detail.
What Is Nutrition Reality? Is it in the advertising claims that a …
What Is Nutrition Reality? Is it in the advertising claims that a food is natural or supplies instant energy? Is it in the myriad of dietary supplements? Is it in the diet plans for instant weight loss and glowing health? The only way to find out is to learn the basic principles of nutrition science, so you can be your own nutrition expert. Here is the true introduction to nutrition that you will read with pleasure and real understanding. It will free you from dependence on popular sources of information - often misinformation - so you can distinguish illusion from the realities of nutrition.
For the course NUFS 016: Science, Physiology, and Nutrition A wonderful blend …
For the course NUFS 016: Science, Physiology, and Nutrition
A wonderful blend of physiology, nutrition, biochemistry, genetics, biology, evolution, chemistry--what we all need to know as informed citizens. A basic knowledge of the life sciences and how our bodies work--to promote our own good health, especially as we're bombarded with misleading advertisements, soundbites, and the like. DNA fingerprinting, calorie requirements, dietary advice, genetic engineering (including gene editing with CRISPR cas9)--all in an easy-to understand book.
This course provides an introduction to life sciences, from chemistry to cellular and physiologic functions, with nutrition as an underlying theme. Interactions with environment, including effect of culture, genetics, and nutrition on susceptibility to disease. Applications of biotechnology in the life sciences.
In this course we will discover how innovative technologies combined with profound …
In this course we will discover how innovative technologies combined with profound hypotheses have given rise to our current understanding of neuroscience. We will study both new and classical primary research papers with a focus on the plasticity between synapses in a brain structure called the hippocampus, which is believed to underlie the ability to create and retrieve certain classes of memories. We will discuss the basic electrical properties of neurons and how they fire. We will see how firing properties can change with experience, and we will study the biochemical basis of these changes. We will learn how molecular biology can be used to specifically change the biochemical properties of brain circuits, and we will see how these circuits form a representation of space giving rise to complex behaviors in living animals. A special emphasis will be given to understanding why specific experiments were done and how to design experiments that will answer the questions you have about the brain. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.
Biochemistry (and Molecular Biology) represent one of the fastest-growing fields of scientific …
Biochemistry (and Molecular Biology) represent one of the fastest-growing fields of scientific research and technical innovation and the resulting biotechnology is increasingly applied to other fields of study. So, an understanding of Biochemistry is increasingly important for students in all biological disciplines. However, at the same time, the content is inherently complex, highly abstract, and often deeply rooted in the pure sciences – mathematics, chemistry, and physics. This makes it difficult to both learn and to teach.
This book is designed as a succinct and focused resource, specifically aimed to help students grasp key threshold concepts in Biochemistry. Due to their troublesome nature, understanding threshold concepts is a cognitively demanding task. By using a series of thematically linked case studies that accompany theory, the cognitive load will be reduced. This will free up students to focus on learning concepts rather than distracting them with unnecessary specifics.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.