Updating search results...

Search Resources

134 Results

View
Selected filters:
  • physics
Mechanics 1
Unrestricted Use
CC BY
Rating
0.0 stars

This module of Mechanics 1 addresses aspects experienced in daily life and in our environment including: 1. Physical quantities and vector operators; 2. Kinematics of a material point in one dimension and two dimensions: 3. Research of parametric equations and trajectories of a moving object 4. Calculation of velocity and acceleration vectors in different coordinate systems 5. The composition law of velocities and accelerations 6. Static solids (forces acting on a system) 7. The dynamics of material points using Newton’s laws 8. The concepts of Work, Energy, Power, Mechanical theorem of kinetic energy and the conservation of mechanical energy. This module comprises of 4 units .

Subject:
Physical Science
Physics
Material Type:
Module
Provider:
African Virtual University
Provider Set:
OER@AVU
Author:
Adolphe Ratiarison
Date Added:
03/13/2018
Mesoscopic Physics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Mesoscopic physics is the area of Solid State physics that covers the transition regime between macroscopic objects and the microscopic, atomic world. The main goal of the course is to introduce the physical concepts underlying the phenomena in this field.

Subject:
Physical Science
Physics
Material Type:
Assessment
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
H.S.J.ĺĘvan der Zant
Date Added:
02/03/2016
Molecular Workbench
Read the Fine Print
Educational Use
Rating
0.0 stars

Created by the Concord Consortium, the Molecular Workbench is "a modeling tool for designing and conducting computational experiments across science." First-time visitors can check out one of the Featured Simulations to get started. The homepage contains a number of curriculum modules which deal with chemical bonding, semiconductors, and diffusion. Visitors can learn how to create their own simulations via the online manual, which is available here as well. The Articles area is quite helpful, as it contains full-text pieces on nanoscience education, quantum chemistry, and a primer on how transistors work. A good way to look over all of the offerings here is to click on the Showcase area. Here visitors can view the Featured simulations, or look through one of five topical sections, which include Biotech and Nanotechnology. Visitors will need to install the free Molecular Workbench software, which is available for Windows, Linux, and Mac.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Interactive
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
Concord Consortium Inc.
Date Added:
07/02/2012
NSU BoR RPCC Promoting Academic Success in TECH through Remediation with OER Module Integration [PASTROMI]
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

OER Modules to support Allied Health (Nursing), Drafting, and Welding were created by RPCC faculty Dr. Esperanza Zenon, Ms. Ginny Bradley, Ms. Jesses Walzac, Ms. Donna Rybicki, Ms. Keisha Moore, Ms. Auriel McGalliard, and Mr. Elantonio McKarry. These modules were developed as part of the Promoting Academic Success in TECH through Remediation with OER Module Integration [PASTROMI] project funded by Cooperative Agreement No. NSU-FY2020-21-003 eLearning Innovations Grant Program FY20-21 between Northwestern State University and the Louisiana Board of Regents.

Subject:
Career and Technical Education
Chemistry
Health, Medicine and Nursing
Language, Grammar and Vocabulary
Mathematics
Physics
Welding
Material Type:
Activity/Lab
Homework/Assignment
Module
Textbook
Unit of Study
Author:
Esperanza Zenon
Date Added:
12/22/2020
Nanomechanics of Materials and Biomaterials, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course focuses on the latest scientific developments and discoveries in the field of nanomechanics, the study of forces and motion on extremely tiny (10-9 m) areas of synthetic and biological materials and structures. At this level, mechanical properties are intimately related to chemistry, physics, and quantum mechanics. Most lectures will consist of a theoretical component that will then be compared to recent experimental data (case studies) in the literature. The course begins with a series of introductory lectures that describes the normal and lateral forces acting at the atomic scale. The following discussions include experimental techniques in high resolution force spectroscopy, atomistic aspects of adhesion, nanoindentation, molecular details of fracture, chemical force microscopy, elasticity of single macromolecular chains, intermolecular interactions in polymers, dynamic force spectroscopy, biomolecular bond strength measurements, and molecular motors.

Subject:
Biology
Chemistry
Genetics
Natural Science
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Ortiz, Christine
Date Added:
01/01/2007
Non Equilibrium Thermodynamics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course describes in a simple and practical way what non-equilibrium thermodynamics is and how it can contribute to engineering fields. It explains how to derive proper equations of transport from the second law of thermodynamics or the entropy production. The obtained equations are frequently more precise than used so far, and can be used to understand the waste of energy resources in central process units in the industry. The entropy balance is used to define the energy efficiency in energy conversion and create consistent thermodynamic models. It also provides a systematic method for minimizing energy losses that are connected with transport of heat, mass, charge and momentum. The entropy balance examines operation at the state of minimum entropy production and is used to propose some rules of design for energy efficient operation. For this course some knowledge of engineering thermodynamics is a prerequisite. The first and second law of thermodynamics and terms as entropy should be known before starting this course.

Subject:
Applied Science
Engineering
Material Type:
Lecture
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
S.H. Kjelstrup
Date Added:
02/11/2016
Nuclear Systems Design Project, Fall 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This capstone course is a group design project involving integration of nuclear physics, particle transport, control, heat transfer, safety, instrumentation, materials, environmental impact, and economic optimization. It provides opportunities to synthesize knowledge acquired in nuclear and non-nuclear subjects and apply this knowledge to practical problems of current interest in nuclear applications design. Each year, the class takes on a different design project; this year, the project is a power plant design that ties together the creation of emission-free electricity with carbon sequestration and fossil fuel displacement. Students taking graduate version complete additional assignments.This course is an elective subject in MIT's undergraduate Energy Studies Minor. This Institute-wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Michael Short
Date Added:
01/01/2011
Particle Physics II, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Survey of current research in High Energy Physics. Topics include electron-positron and proton-antiproton collisions; electroweak phenomena, heavy flavor physics, and high-precision tests of the Standard Model. Other topics include searches for new phenomena (compositeness, supersymmetry, and GUTs), discussion of our new experimental results (e.g. the Top Quark), and expectations from future accelerators (B factory, LHC). 8.811, Particle Physics II, describes essential research in High Energy Physics. We derive the Standard Model (SM) first using a bottom up method based on Unitarity, in addition to the usual top down method using SU3xSU2xU1. We describe and analyze several classical experiments, which established the SM, as examples on how to design experiments. Further topics include heavy flavor physics, high-precision tests of the Standard Model, neutrino oscillations, searches for new phenomena (compositeness, supersymmetry, technical color, and GUTs), and discussion of expectations from future accelerators (B factory, LHC, large electron-positron linear colliders, etc). The term paper requires the students to have constant discussions with the instructor throughout the semester on theories, physics, measurables, signatures, detectors, resolution, background identification and elimination, signal to noise and statistical analysis.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Chen, Min
Date Added:
01/01/2005
Physics
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

In this text, you will begin to explore the history of the formal study of physics, beginning with natural philosophy and the ancient Greeks, and leading up through a review of Sir Isaac Newton and the laws of physics that bear his name. You will also be introduced to the standards scientists use when they study physical quantities and the interrelated system of measurements most of the scientific community uses to communicate in a single mathematical language. Finally, you will study the limits of our ability to be accurate and precise, and the reasons scientists go to painstaking lengths to be as clear as possible regarding their own limitations.

Subject:
Physical Science
Physics
Material Type:
Full Course
Textbook
Provider:
Lumen Learning
Provider Set:
Candela Courseware
Date Added:
04/25/2019
Physics 132: What is an Electron? What is Light?
Unrestricted Use
CC BY
Rating
0.0 stars

A second semester introductory physics course for life sciences students that looks to deepen students' understanding of biology and chemistry through physics all through the lens of understanding two of the most fundamental particles in the Universe: electrons and photons. The book begins with exploring the quantum mechanical nature of these objects to expand on what students have learned in chemistry and then proceeds to geometric optics (using the human eye as a theme), electrostatics (using membrane potentials), circuits (using the neuron), and finally synthesizing everything in a unit exploring the meaning of "light is an electromagnetic wave."

Subject:
Physical Science
Physics
Material Type:
Textbook
Author:
E.F. Redish
Edward J. Neth
John Eggebrecht
Julianne Zedalis
Klaus Theopold
Paul Flowers
Paul Peter Urone
Richard Langley
William R. Robinson
Roger Hinrichs
Date Added:
08/04/2020
Physics 221-223
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

The Physics 205/206 and 210/211 sequences are intended for biology majors. If you're an engineering major, you should be in Physics 221. If you just need a gen ed class, you should be in Physics 130. Physics 205/206 satisfies your physics requirement if you're a biology major transferring to a Cal State. The prerequisites for 205 are Math 141 (precalculus) and Math 142 (trig). Physics 210/211 satisfies your physics requirement if you're a biology major transferring to a UC (or a Cal State). The prerequisites for 210 are Math 141 (precalculus) and Math 142 (trig), and the corequisite is Math 150A (calculus).

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
Light and Matter
Provider Set:
Light and Matter Courses
Author:
Benjamin Crowell, Fullerton College
Date Added:
04/25/2019
Physics Demonstration Videos, Spring 2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Technical Services Group at MIT's Department of Physics provides technical and teaching support for undergraduate courses at MIT. They have recorded an ever-growing collection of physics demonstrations for general use. These brief videos are publicly available on MIT Tech TV. Online Publication

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Date Added:
01/01/2012
Physics III: Vibrations and Waves, Fall 2016
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Mechanical vibrations and waves; simple harmonic motion, superposition, forced vibrations and resonance, coupled oscillations and normal modes; vibrations of continuous systems; reflection and refraction; phase and group velocity. Optics; wave solutions to Maxwell's equations; polarization; Snell's Law, interference, Huygens's principle, Fraunhofer diffraction, and gratings.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Lewin, Walter
Date Added:
01/01/2004
Physics (PHYS 100 Non Science Majors)
Unrestricted Use
CC BY
Rating
0.0 stars

This is a course for non-science majors that is a survey of the central concepts in physics relating everyday experiences with the principles and laws in physics on a conceptual level. Upon successful completion of this course, students will be able to: Describe basic principles of motion and state the law of inertia; Predict the motion of an object by applying Newtonęs laws when given the mass, a force, the characteristics of motion and a duration of time; Summarize the law of conservation of energy and explain its importance as the fundamental principle of energy as a –law of nature”; Explain the use of the principle of Energy conservation when applied to simple energy transformation systems; Define the Conservation of Energy Law as the 1st Law of Thermodynamics and State 2nd Law of Thermodynamics in 3 ways; Outline the limitations and risks associated with current societal energy practices,and explore options for changes in energy policy for the next century and beyond; Describe physical aspects of waves and wave motion; and explain the production of electromagnetic waves, and distinguish between the different parts of the electromagnetic spectrum.

Subject:
Physical Science
Physics
Material Type:
Assessment
Full Course
Reading
Syllabus
Provider:
Washington State Board for Community & Technical Colleges
Provider Set:
Open Course Library
Date Added:
04/26/2019
Physics of Rock Climbing, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is a lecture, discussion, and project based seminar about the physics of rock climbing. Participants are first exposed to the unsolved problems in the climbing community that could be answered by research and then asked to solve a small part of one of these problems. The seminar provides an introduction to engineering problems, an opportunity to practice communication skills, and a brief stab at doing some research. This seminar explicitly does not include climbing instruction nor is climbing/mountaineering experience a prerequisite.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Custer, David
Date Added:
01/01/2006
Polymer Physics, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This course presents the mechanical, optical, and transport properties of polymers with respect to the underlying physics and physical chemistry of polymers in melt, solution, and solid state. Topics include conformation and molecular dimensions of polymer chains in solutions, melts, blends, and block copolymers; an examination of the structure of glassy, crystalline, and rubbery elastic states of polymers; thermodynamics of polymer solutions, blends, crystallization; liquid crystallinity, microphase separation, and self-assembled organic-inorganic nanocomposites. Case studies include relationships between structure and function in technologically important polymeric systems."

Subject:
Chemistry
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Thomas, Edwin (Ned)
Date Added:
01/01/2007
Population 2: The Ecological Footprint
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This video describes the ecological footprint and its limitation. It goes into some depth on the computation on the footprint and what it means for the global population. This video is part of the Sustainability Learning Suites, made possible in part by a grant from the National Science Foundation. See 'Learn more about this resource' for Learning Objectives and Activities.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Lecture Notes
Provider:
Cal Poly Materials Engineering
Provider Set:
Sustainability Learning Suites
Author:
Linda Vanasupa
Date Added:
11/12/2019
Precalculus I
Unrestricted Use
CC BY
Rating
0.0 stars

Precalculus I is designed to prepare you for Precalculus II, Calculus, Physics, and higher math and science courses. In this course, the main focus is on five types of functions: linear, polynomial, rational, exponential, and logarithmic. In accompaniment with these functions, you will learn how to solve equations and inequalities, graph, find domains and ranges, combine functions, and solve a multitude of real-world applications.

Subject:
Calculus
Mathematics
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
04/29/2019
Principles of Physics II Study Guides and Homework Materials
Unrestricted Use
CC BY
Rating
0.0 stars

This set of study guides and homework materials was created for Principles of Physics II under a Round Six ALG Textbook Transformation Grant.

Subject:
Physical Science
Physics
Material Type:
Assessment
Homework/Assignment
Provider:
University System of Georgia
Provider Set:
Galileo Open Learning Materials
Author:
Dereth Drake
Francis Flaherty
Michael Holt
Date Added:
03/20/2018
Principles of Physics I Study and Homework Materials
Unrestricted Use
CC BY
Rating
0.0 stars

This set of study guides and homework materials was created for Principles of Physics I under a Round Six ALG Textbook Transformation Grant.

Subject:
Physical Science
Physics
Material Type:
Homework/Assignment
Provider:
University System of Georgia
Provider Set:
Galileo Open Learning Materials
Author:
Dereth Drake
Francis Flaherty
Michael Holt
Date Added:
03/20/2018