APEX Calculus is a calculus textbook written for traditional college/university calculus courses. …
APEX Calculus is a calculus textbook written for traditional college/university calculus courses. It has the look and feel of the calculus book you likely use right now (Stewart, Thomas & Finney, etc.). The explanations of new concepts is clear, written for someone who does not yet know calculus. Each section ends with an exercise set with ample problems to practice & test skills (odd answers are in the back).
Access also available here: http://www.apexcalculus.com/
Table of Contents Chapter 1: Limits Chapter 2: Derivatives Chapter 3: The Graphical Behavior of Functions Chapter 4: Applications of the Derivative Chapter 5: Integration Chapter 6: Techniques of Antidifferentiation Chapter 7: Applications of Integration Chapter 8: Sequences and Series Chapter 9: Curves in the Plane Chapter 10: Vectors Chapter 11: Vector Valued Functions Chapter 12: Functions of Several Variables Chapter 13: Multiple Integrations Chapter 14: Vector Analysis
Active Calculus is different from most existing calculus texts in at least …
Active Calculus is different from most existing calculus texts in at least the following ways: the text is free for download by students and instructors in .pdf format; in the electronic format, graphics are in full color and there are live html links to java applets; the text is open source, and interested instructors can gain access to the original source files upon request; the style of the text requires students to be active learners — there are very few worked examples in the text, with there instead being 3-4 activities per section that engage students in connecting ideas, solving problems, and developing understanding of key calculus concepts; each section begins with motivating questions, a brief introduction, and a preview activity, all of which are designed to be read and completed prior to class; the exercises are few in number and challenging in nature.
Active Calculus is different from most existing calculus texts in at least …
Active Calculus is different from most existing calculus texts in at least the following ways: the text is freely readable online in HTML format and is also available for in PDF; in the electronic format, graphics are in full color and there are live links to java applets; version 2.0 now contains WeBWorK exercises in each chapter, which are fully interactive in the HTML format and included in print in the PDF; the text is open source, and interested users can gain access to the original source files on GitHub; the style of the text requires students to be active learners — there are very few worked examples in the text, with there instead being 3-4 activities per section that engage students in connecting ideas, solving problems, and developing understanding of key calculus concepts; each section begins with motivating questions, a brief introduction, and a preview activity, all of which are designed to be read and completed prior to class; following the WeBWorK exercises in each section, there are several challenging problems that require students to connect key ideas and write to communicate their understanding. For more information, see the author's website and blog.
Access also available here: https://scholarworks.gvsu.edu/books/15/
Table of Contents 1 Understanding the Derivative 2 Computing Derivatives 3 Using Derivatives 4 The Definite Integral 5 Finding Antiderivatives and Evaluating Integrals 6 Using Definite Integrals 7 Differential Equations 8 Sequences and Series
Active Calculus is different from most existing calculus texts in at least …
Active Calculus is different from most existing calculus texts in at least the following ways: the text is freely readable online in HTML format and is also available for in PDF; in the electronic format, graphics are in full color and there are live links to java applets; there are live WeBWorK exercises in each chapter, which are fully interactive in the HTML format and included in print in the PDF; the text is open source, and interested users can gain access to the original source files on GitHub; the style of the text requires students to be active learners — there are very few worked examples in the text, with there instead being 3-4 activities per section that engage students in connecting ideas, solving problems, and developing understanding of key calculus concepts; each section begins with motivating questions, a brief introduction, and a preview activity, all of which are designed to be read and completed prior to class; following the WeBWorK exercises in each section, there are several challenging problems that require students to connect key ideas and write to communicate their understanding. For more information, see the author's website and blog.
2017 edition. Active Calculus Multivariable is the continuation of Active Calculus to …
2017 edition. Active Calculus Multivariable is the continuation of Active Calculus to multivariable functions. The Active Calculus texts are different from most existing calculus texts in at least the following ways: the texts are free for download by students and instructors in .pdf format; in the electronic format, graphics are in full color and there are live html links to java applets; the texts are open source, and interested instructors can gain access to the original source files upon request; the style of the texts requires students to be active learners — there are very few worked examples in the texts, with there instead being 3-4 activities per section that engage students in connecting ideas, solving problems, and developing understanding of key calculus concepts; each section begins with motivating questions, a brief introduction, and a preview activity, all of which are designed to be read and completed prior to class; the exercises are few in number and challenging in nature.
Access also available here: https://scholarworks.gvsu.edu/books/14/
Active Calculus Multivariable is the continuation of Active Calculus to multivariable functions. …
Active Calculus Multivariable is the continuation of Active Calculus to multivariable functions. The Active Calculus texts are different from most existing calculus texts in at least the following ways: the texts are freely readable online in HTML format (new in this version of Active Calculus Multivariable) and are also available for in PDF; in the electronic format, graphics are in full color; the texts are open source, and interested instructors can gain access to the original source files on GitHub; the style of the texts requires students to be active learners — there are very few worked examples in the texts, with there instead being 3-4 activities per section that engage students in connecting ideas, solving problems, and developing understanding of key calculus concepts; each section begins with motivating questions, a brief introduction, and a preview activity, all of which are designed to be read and completed prior to class; each section contains a collection of WeBWorK exercises (with solutions available in the HTML version, new in this version) followed by several challenging problems that require students to connect key ideas and write to communicate their understanding.
Applied Calculus instructs students in the differential and integral calculus of elementary …
Applied Calculus instructs students in the differential and integral calculus of elementary functions with an emphasis on applications to business, social and life science. Different from a traditional calculus course for engineering, science and math majors, this course does not use trigonometry, nor does it focus on mathematical proofs as an instructional method.
Welcome to applied calculus for computing. Calculation intended to be a general …
Welcome to applied calculus for computing. Calculation intended to be a general method of solving quantifiable problems. In the application of the calculation method, or as it is known the”infinitesimal” method, a problem is”divided into infinitesimal parts”(differentiation), analysed in its relations with the neighbouring parts and then”added”(integration) until the solution method. The two parts of this the analysis and synthesis form a model for more sophisticated methods based on calculation, used in applied science concepts you learn in calculus allow statistical , physicists and engineers create mathematical models of real situations and real problems and simulate their resolutions under different operating conditions.
The text is mostly an adaptation of two other excellent open- source …
The text is mostly an adaptation of two other excellent open- source calculus textbooks: Active Calculus by Dr. Matt Boelkins of Grand Valley State University and Drs. Gregory Hartman, Brian Heinold, Troy Siemers, Dimplekumar Chalishajar, and Jennifer Bowen of the Virginia Military Institute and Mount Saint Mary's University. Both of these texts can be found at http://aimath.org/textbooks/approved-textbooks/. The authors of this text have combined sections, examples, and exercises from the above two texts along with some of their own content to generate this text. The impetus for the creation of this text was to adopt an open-source textbook for Calculus while maintaining the typical schedule and content of the calculus sequence at our home institution.
This text is an adaptation of two very excellent open-source textbooks: Active …
This text is an adaptation of two very excellent open-source textbooks: Active Calculus by Dr. Matt Boelkins and APEX Calculus by Drs. Gregory Hartman, Brian Heinold, Troy Siemers, Dimplekumar Chalishajar, and Jennifer Bowen. Topics include integrals, volume, arcs, density, physics applications, differential equations, and hyperbolic functions.
Table of Contents: 1. Using Definite Integrals to Find Volume 2. Volume by The Shell Method 3. Arc Length and Surface Area 4. Density, Mass, and Center of Mass 5. Physics Applications: Work, Force, and Pressure 6. An Introduction to Differential Equations 7. Separable differential equations 8. Hyperbolic Functions
This short text is designed more for self-study or review than for …
This short text is designed more for self-study or review than for classroom use; full solutions are given for nearly all the end-of-chapter problems. For a more traditional text designed for classroom use, see Fundamentals of Calculus (http://www.lightandmatter.com/fund/). The focus is mainly on integration and differentiation of functions of a single variable, although iterated integrals are discussed. Infinitesimals are used when appropriate, and are treated more rigorously than in old books like Thompson's Calculus Made Easy, but in less detail than in Keisler's Elementary Calculus: An Approach Using Infinitesimals. Numerical examples are given using the open-source computer algebra system Yacas, and Yacas is also used sometimes to cut down on the drudgery of symbolic techniques such as partial fractions. Proofs are given for all important results, but are often relegated to the back of the book, and the emphasis is on teaching the techniques of calculus rather than on abstract results.
This course provides an introduction to applied concepts in Calculus that are …
This course provides an introduction to applied concepts in Calculus that are relevant to the managerial, life, and social sciences. Students should have a firm grasp of the concept of functions to succeed in this course. Topics covered include derivatives of basic functions and how they can be used to optimize quantities such as profit and revenues, as well as integrals of basic functions and how they can be used to describe the total change in a quantity over time.
MATH&148 is a calculus course for business students. It is designed for …
MATH&148 is a calculus course for business students. It is designed for students who want a brief course in calculus. Topics include differential and integral calculus of elementary functions. Problems emphasize business and social science applications. Translating words into mathematics and solving word problems are emphasized over algebra. Applications are mainly business oriented (e.g. cost, revenue, and profit). Mathematical theory and complex algebraic manipulations are not mainstays of this course, which is designed to be less rigorous than the calculus sequence for scientists and engineers. Topics are presented according to the rule of four: geometrically, numerically, analytically, and verbally. That is, symbolic manipulation must be balanced with graphical interpretation, numerical examples, and writing. Trigonometry is not part of the course.
This is a four unit module. The first two units cover the …
This is a four unit module. The first two units cover the basic concepts of the differential and integral calculus of functions of a single variable. The third unit is devoted to sequences of real numbers and infinite series of both real numbers and of some special functions. The fourth unit is on the differential and integral calculus of functions of several variables.
Published in 1991 and still in print from Wellesley-Cambridge Press, the book …
Published in 1991 and still in print from Wellesley-Cambridge Press, the book is a useful resource for educators and self-learners alike. It is well organized, covers single variable and multivariable calculus in depth, and is rich with applications. There is also an online Instructor's Manual and a student Study Guide. Prof. Strang has also developed a related series of videos, Highlights of Calculus, on the basic ideas of calculus.
Table of Contents Chapter 1: Introduction to Calculus Chapter 2: Derivatives Chapter 3: Applications of the Derivative Chapter 4: The Chain Rule Chapter 5: Integrals Chapter 6: Exponentials and Logarithms Chapter 7: Techniques of Integration Chapter 8: Applications of the Integral Chapter 9: Polar Coordinates and Complex Numbers Chapter 10: Infinite Series Chapter 11: Vectors and Matrices Chapter 12: Motion along a Curve Chapter 13: Partial Derivatives Chapter 14: Multiple Integrals Chapter 15: Vector Calculus Chapter 16: Mathematics after Calculus
Also available from: https://ocw.mit.edu/resources/res-18-001-calculus-online-textbook-spring-2005/
Published in 1991 by Wellesley-Cambridge Press, the book is a useful resource …
Published in 1991 by Wellesley-Cambridge Press, the book is a useful resource for educators and self-learners alike. It is well organized, covers single variable and multivariable calculus in depth, and is rich with applications.
In addition to the Textbook, there is also an online Instructor's Manual and a student Study Guide. Prof. Strang has also developed a related series of videos, Highlights of Calculus, on the basic ideas of calculus.
Calculus is the mathematics of CHANGE and almost everything in our world …
Calculus is the mathematics of CHANGE and almost everything in our world is changing. In this course, you will investigate limits and how they are used to calculate rate of change at a point, define the continuity of a function and how they are used to define derivatives. Definite and indefinite integrals and their applications are covered, including improper integrals. Late in the course, you will find Calculus with parametric equations and polar coordinates, sequences and series, and vectors.
This course is oriented toward US high school students. Its structure and …
This course is oriented toward US high school students. Its structure and materials are aligned to the US Common Core Standards. Foci include: derivatives, integrals, limits, approximation, and applications.
This course begins with a review of algebra specifically designed to help …
This course begins with a review of algebra specifically designed to help and prepare the student for the study of calculus, and continues with discussion of functions, graphs, limits, continuity, and derivatives. The appendix provides a large collection of reference facts, geometry, and trigonometry that will assist in solving calculus problems long after the course is over. Upon successful completion of this course, the student will be able to: calculate or estimate limits of functions given by formulas, graphs, or tables by using properties of limits and LĺÎĺ_ĺĚĺ_hopitalĺÎĺ_ĺĚĺ_s Rule; state whether a function given by a graph or formula is continuous or differentiable at a given point or on a given interval and justify the answer; calculate average and instantaneous rates of change in context, and state the meaning and units of the derivative for functions given graphically; calculate derivatives of polynomial, rational, common transcendental functions, and implicitly defined functions; apply the ideas and techniques of derivatives to solve maximum and minimum problems and related rate problems, and calculate slopes and rates for function given as parametric equations; find extreme values of modeling functions given by formulas or graphs; predict, construct, and interpret the shapes of graphs; solve equations using NewtonĺÎĺ_ĺĚĺ_s Method; find linear approximations to functions using differentials; festate in words the meanings of the solutions to applied problems, attaching the appropriate units to an answer; state which parts of a mathematical statement are assumptions, such as hypotheses, and which parts are conclusions. This free course may be completed online at any time. It has been developed through a partnership with the Washington State Board for Community and Technical Colleges; the Saylor Foundation has modified some WSBCTC materials. (Mathematics 005)
This course is an introduction to the calculus of functions of several …
This course is an introduction to the calculus of functions of several variables. It begins with studying the basic objects of multidimensional geometry: vectors and vector operations, lines, planes, cylinders, quadric surfaces, and various coordinate systems. It continues with the elementary differential geometry of vector functions and space curves. After this, it extends the basic tools of differential calculus - limits, continuity, derivatives, linearization, and optimization - to multidimensional problems. The course will conclude with a study of integration in higher dimensions, culminating in a multidimensional version of the substitution rule.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.