This course reviews the key genomic technologies and computational approaches that are …
This course reviews the key genomic technologies and computational approaches that are driving advances in prognostics, diagnostics, and treatment. Throughout the semester, emphasis will return to issues surrounding the context of genomics in medicine including: what does a physician need to know? what sorts of questions will s/he likely encounter from patients? how should s/he respond? Lecturers will guide the student through real world patient-doctor interactions. Outcome considerations and socioeconomic implications of personalized medicine are also discussed. The first part of the course introduces key basic concepts of molecular biology, computational biology, and genomics. Continuing in the informatics applications portion of the course, lecturers begin each lecture block with a scenario, in order to set the stage and engage the student by showing: why is this important to know? how will the information presented be brought to bear on medical practice? The final section presents the ethical, legal, and social issues surrounding genomic medicine. A vision of how genomic medicine relates to preventative care and public health is presented in a discussion forum with the students where the following questions are explored: what is your level of preparedness now? what challenges must be met by the healthcare industry to get to where it needs to be?
History and Science of Cultivated Plants narrates how humans transitioned from foragers …
History and Science of Cultivated Plants narrates how humans transitioned from foragers to farmers and have arrived at present-day industrial agriculture-based civilization. It entails myths, historical accounts, and scientific concepts to describe how human efforts have shaped and produced easier to grow, larger, tastier, and more nutritious fruits, vegetables, and grains from wild plants. Using examples of various economically and socially important crops central to human civilization, the book describes the origin of crop plants, the evolution of agricultural practices, fundamental concepts of natural selection vs. domestication, experimental and methodical plant breeding, and plant biotechnology.
" This class is a project-based introduction to the engineering of synthetic …
" This class is a project-based introduction to the engineering of synthetic biological systems. Throughout the term, students develop projects that are responsive to real-world problems of their choosing, and whose solutions depend on biological technologies. Lectures, discussions, and studio exercises will introduce (1) components and control of prokaryotic and eukaryotic behavior, (2) DNA synthesis, standards, and abstraction in biological engineering, and (3) issues of human practice, including biological safety; security; ownership, sharing, and innovation; and ethics. Enrollment preference is given to freshmen. This subject was originally developed and first taught in Spring 2008 by Drew Endy and Natalie Kuldell. Many of Drew's materials are used in this Spring 2009 version, and are included with his permission. This OCW Web site is based on the OpenWetWare class Wiki, found at OpenWetWare: 20.020 (S09)"
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover …
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.
This lab course supplements ĺÎĺĺĺŤIntroduction to Evolutionary Biology and EcologyĄ_ĺĺö. Although it …
This lab course supplements ĺÎĺĺĺŤIntroduction to Evolutionary Biology and EcologyĄ_ĺĺö. Although it does not replicate a true lab experience, it does encourage greater familiarity with scientific thinking and techniques, and will enable exploration of some key principles of evolutionary biology and ecology. This lab supplement focuses on visual understanding, application, and practical use of knowledge. In each unit, the student will work through tutorials related to important scientific concepts and then will be asked to think creatively about how that knowledge can be put to practical or experimental use. Upon successful completion of this lab supplement, the student will be able to: Display an understanding of Mendelian inheritance as applied to organisms in virtual experiments; Describe the process of natural selection and understand how it will alter populations over generations and under a variety of selection pressures; Understand how the process of speciation is affected by isolation and selection pressures; Understand predator-prey dynamics under a variety of ecological conditions; Distinguish between biomes in terms of their structure/climates as well as the types and diversity of organisms that inhabit them. (Biology 102 Laboratory)
Though biology as we know it today is a relatively new field, …
Though biology as we know it today is a relatively new field, we have been studying living things since the beginning of recorded history. This introductory course in biology starts at the microscopic level, with molecules and cells, then moves into the specifics of cell structure and behavior. Upon successful completion of this course, students will be able to: Describe in general terms how life began on Earth; Identify early scientists that played important roles in furthering our understanding of cellular life; Describe the characteristics that define life; List the inorganic and organic molecules that are necessary for life; List the structure and function of organelles in animal and plant cells; List the similarities and differences between animal and plant cells; Describe the reactions in photosynthesis; Explain how the different photosynthetic reactions are found in different parts of the chloroplast; Describe the sequence of photosynthetic reactions; Explain the use of products and the synthesis of reactants in photosynthesis; Explain how protein is synthesized in eukaryotic cells; Describe the similarities and differences between photosynthesis and aerobic respiration; List the reactions in aerobic respiration; Explain the use of products and the synthesis of reactants in aerobic respiration; Describe the similarities and differences between anaerobic and aerobic respiration. (Biology 101; See also: Psychology 203)
This lab course supplements Introduction to Molecular and Cellular Biology. Although it …
This lab course supplements Introduction to Molecular and Cellular Biology. Although it does not replicate a true lab experience, it does enable further exploration of some key principles of molecular and cellular biology. In each unit, the student will work through tutorials related to important scientific concepts, and then will be asked to think creatively about how those concepts can be put to practical or experimental use. This lab course also contains activities devoted to learning important techniques in scientific study such as microscope use, DNA extraction, Polymerase Chain Reaction, and examination of DNA microarrays. Upon successful completion of this lab supplement, students will be able to: Identify the important components of scientific experiments and create their own experiments; Identify the molecular differences between proteins, fats, and carbohydrates, and explain the molecular behavior of water; Describe the process of photosynthesis; Describe the process of cellular respiration; Identify the differences between DNA and RNA; Describe the entire transcription/translation process, from gene to protein; Explain how recombinant genomes are formed; Use critical thinking to find ways that any of the above natural processes might be altered or manipulated; Explain how to use a compound light microscope for data collection; Explain how to conduct and use various experimental techniques, including DNA extraction, PCR, and DNA microarrays. (Biology 101 Laboratory)
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover …
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), developmental biology, neurobiology and evolution.Biological function at the molecular level is particularly emphasized in all courses and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.
Developmental psychology concerns itself with the changes (psychological and otherwise) that occur …
Developmental psychology concerns itself with the changes (psychological and otherwise) that occur as a result of our physical and mental maturation. This course proceeds from prenatal development through adolescent and adult development. Upon successful completion of this course, the student will be able to: Discuss the interaction between and the roles of nature and nurture in lifespan development.; Describe the basic development of the human nervous system; Explain the developmental processes associated with the five senses; Describe the important developmental milestones and age expectations associated with motor skills, social skills, cognitive ability, sensory awareness, and the use of language; Discuss the important theories of cognitive development, including those of Piaget, Vygotsky, the information-processing approach, and the intelligence perspective; Discuss and contrast the nativist, behavioral-cognitive, functionalist, and learning stage theories of language development; Describe the developmental process of language, from cooing and babbling to mature language; Explain the important theoretical issues in the study of the development of personality; Discuss the most influential theories of personality development, including those of Freud, Erikson, Klein and Mahler, Bowlby, and Ainsworth; Explain Kohlberg's theory of moral development, including the perspectives of its critics; Describe the physical and cognitive changes associated with adolescent development; Explain the significance of the differences in maturation rates between individuals; Discuss the major issues of development in adulthood, including marriage and divorce, parenting, and mid-/later-life physical and cognitive changes. (Psychology 302a)
This course is the first in a three-course sequence that introduces biology …
This course is the first in a three-course sequence that introduces biology in preparation for advanced study in areas of biological science such as medicine, dentistry, cell biology, microbiology, or veterinary medicine. Biol& 211 introduces students to cellular structure and function. Major topics studied include: energy capture and utilization, cellular reproduction, inheritance, genetic mutation, protein synthesis, gene expression, and biotechnology.
This course will cover a range of diverse areas of microbiology, including …
This course will cover a range of diverse areas of microbiology, including virology, bacteriology, and even applied microbiology. This course will focus on the medical aspects of microbiology, as medical research has been the primary motivator in microbiology research. Upon successful completion of this course, the student will be able to: explain how organisms are classified using taxonomy, focusing on the domains Archaea, Bacteria, and Eukarya; describe the chemical building blocks and metabolic processes important to sustain microbial life; identify the major principles of microbiology and describe the relationship between microbes and other living organisms; discuss pathogenic microbes and their epidemiology; differentiate between microorganisms based on their shape, size, arrangement, staining, and culture characteristics; outline antimicrobial methods including antibiotic use; explain how the human body protects itself; list uses for microbiology in food and beverage preparation and industry. (Biology 307)
After a historical introduction to molecular biology, this course describes the basic …
After a historical introduction to molecular biology, this course describes the basic types of DNA and RNA structure and the molecular interactions that shape them. It describes how DNA is packaged within the cellular nucleus as chromosomes. It also describes the core processes of molecular biology: replication of DNA, transcription of DNA into messenger RNA, and translation of messenger RNA into a protein. These are followed by modifications of these basic processes: regulation of gene expression, DNA mutation and repair, and DNA recombination and transposition. Upon successful completion of this course, students will be able to: discuss the experimental findings that lead to the discovery of inheritance laws; discuss the experimental findings that lead to the identification of DNA as the hereditary material; compare and contrast the structure and function of mRNA, rRNA, tRNA, and DNA; identify the characteristics of catalyzed reactions; compare and contrast enzyme and ribozyme catalyzed reactions; discuss the structure of the chromosome and the consequence of histone modifications in eukaryotes; discuss the stages of transcription, differential splicing, and RNA turnover; predict the translation product of an mRNA using the genetic code; compare and contrast transcription and translation in prokaryotes and eukaryotes; identify codon bias and variations of the standard genetic code; compare and contrast the regulation of prokaryotic and eukaryotic gene expression; predict the activation of an operon and tissue specific gene expression based on the availability of regulators; compare and contrast mutations based on their effect on the gene product; discuss DNA repair mechanisms; discuss DNA recombination, transposition, and the consequence of exon shuffling; design custom-made recombinant DNA using PCR, restriction enzymes, and site-directed mutagenesis; compare and contrast the uses of model organisms; discuss the uses of model organisms in specific molecular biology applications. (Biology 311)
With the Genetics Tool, you can: * Cross two organisms * Self-cross …
With the Genetics Tool, you can: * Cross two organisms * Self-cross one organism * Create mutant versions of one organismWith the Biochemistry Tool, you can: * Look at the structures and colors of the pigment proteins found in one organism * Design proteins and observe their shapes and colors * Compare the amino acid sequences of different pigment proteinsWith the Molecular Biology Tool, you can: * Look at the DNA, mRNA and protein sequences of pigment protein genes * Design genes and observe the colors of the resulting proteins by editing the top DNA strand * Compare the DNA sequences of different pigment protein genes * Create new organisms by specifying their DNA sequences
People have a deep intuition about what has been called the “nature–nurture …
People have a deep intuition about what has been called the “nature–nurture question.” Some aspects of our behavior feel as though they originate in our genetic makeup, while others feel like the result of our upbringing or our own hard work. The scientific field of behavior genetics attempts to study these differences empirically, either by examining similarities among family members with different degrees of genetic relatedness, or, more recently, by studying differences in the DNA of people with different behavioral traits. The scientific methods that have been developed are ingenious, but often inconclusive. Many of the difficulties encountered in the empirical science of behavior genetics turn out to be conceptual, and our intuitions about nature and nurture get more complicated the harder we think about them. In the end, it is an oversimplification to ask how “genetic” some particular behavior is. Genes and environments always combine to produce behavior, and the real science is in the discovery of how they combine for a given behavior.
Genetics, otherwise known as the Science of Heredity, is the study of …
Genetics, otherwise known as the Science of Heredity, is the study of biological information, and how this information is stored, replicated, transmitted and used by subsequent generations. The study of genetics can be sub-divided into three main areas: Transmission Genetics, Molecular Genetics, and Population Genetics. In this Introductory text, the focus is on Transmission or Classical Genetics, which deals with the basic principles of heredity and the mechanisms by which traits are passed from one generation to the next. The work of Gregor Mendel is central to Transmission Genetics; as such, there is a discussion about the pioneering work performed by him along with Mendel’s Laws, as they pertain to inheritance. Other aspects of Classical Genetics are covered, including the relationship between chromosomes and heredity, the arrangement of genes on chromosomes, and the physical mapping of genes.
Biology is designed for multi-semester biology courses for science majors. It is …
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
This textbook is designed specifically for Kansas State's Biology 198 Class. The …
This textbook is designed specifically for Kansas State's Biology 198 Class. The course is taught using the studio approach and based on active learning. The studio manual contains all of the learning objectives for each class period and is the record of all student activities. Hence, this textbook is more of a reference tool while the studio manual is the learning tool.
This textbook is designed specifically for Kansas State's Biology 198 Class. The …
This textbook is designed specifically for Kansas State's Biology 198 Class. The course is taught using the studio approach and based on active learning. The studio manual contains all of the learning objectives for each class period and is the record of all student activities. Hence, this textbook is more of a reference tool while the studio manual is the learning tool.
Psychology is designed to meet scope and sequence requirements for the single-semester …
Psychology is designed to meet scope and sequence requirements for the single-semester introduction to psychology course. The book offers a comprehensive treatment of core concepts, grounded in both classic studies and current and emerging research. The text also includes coverage of the DSM-5 in examinations of psychological disorders. Psychology incorporates discussions that reflect the diversity within the discipline, as well as the diversity of cultures and communities across the globe.Senior Contributing AuthorsRose M. Spielman, Formerly of Quinnipiac UniversityContributing AuthorsKathryn Dumper, Bainbridge State CollegeWilliam Jenkins, Mercer UniversityArlene Lacombe, Saint Joseph's UniversityMarilyn Lovett, Livingstone CollegeMarion Perlmutter, University of Michigan
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.