Updating search results...

Search Resources

580 Results

View
Selected filters:
  • Physical Science
Analysis of Biological Networks (BE.440), Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemical and quantitative views of the interplay of multiple pathways as biological networks are emphasized. Student work will culminate in the preparation of a unique grant application in an area of biological networks.

Subject:
Biology
Chemistry
Natural Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Essigmann, John
Sasisekharan, Ram
Date Added:
01/01/2004
Analytical Chemistry
Unrestricted Use
CC BY
Rating
0.0 stars

Analytical chemistry is the branch of chemistry dealing with measurement, both qualitative and quantitative. This discipline is also concerned with the chemical composition of samples. In the field, analytical chemistry is applied when detecting the presence and determining the quantities of chemical compounds, such as lead in water samples or arsenic in tissue samples. It also encompasses many different spectrochemical techniques, all of which are used under various experimental conditions. This branch of chemistry teaches the general theories behind the use of each instrument as well analysis of experimental data. Upon successful completion of this course, the student will be able to: Demonstrate a mastery of various methods of expressing concentration; Use a linear calibration curve to calculate concentration; Describe the various spectrochemical techniques as described within the course; Use sample data obtained from spectrochemical techniques to calculate unknown concentrations or obtain structural information where applicable; Describe the various chromatographies described within this course and analyze a given chromatogram; Demonstrate an understanding of electrochemistry and the methods used to study the response of an electrolyte through current of potential. (Chemistry 108)

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
04/29/2019
Analytical Chemistry
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Analytical chemistry spans nearly all areas of chemistry but involves the development of tools and methods to measure physical properties of substances and apply those techniques to the identification of their presence (qualitative analysis) and quantify the amount present (quantitative analysis) of species in a wide variety of settings.

Subject:
Chemistry
Physical Science
Material Type:
Textbook
Provider:
LibreTexts
Date Added:
11/12/2019
Analytical Chemistry 2.0
Unrestricted Use
CC BY
Rating
0.0 stars

Analytical chemistry is more than a collection of analytical methods and an understanding of equilibrium chemistry; it is an approach to solving chemical problems. Although equilibrium chemistry and analytical methods are important, their coverage should not come at the expense of other equally important topics. The introductory course in analytical chemistry is the ideal place in the undergraduate chemistry curriculum for exploring topics such as experimental design, sampling, calibration strategies, standardization, optimization, statistics, and the validation of experimental results. Analytical methods come and go, but best practices for designing and validating analytical methods are universal. Because chemistry is an experimental science it is essential that all chemistry students understand the importance of making good measurements.

Subject:
Chemistry
Physical Science
Material Type:
Textbook
Provider:
BCcampus
Provider Set:
BCcampus Open Textbooks
Author:
David Harvey
Date Added:
10/28/2014
Analytical Chemistry 2.1
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

As currently taught in the United States, introductory courses in analytical chemistry emphasize quantitative (and sometimes qualitative) methods of analysis along with a heavy dose of equilibrium chemistry. Analytical chemistry, however, is much more than a collection of analytical methods and an understanding of equilibrium chemistry; it is an approach to solving chemical problems. Although equilibrium chemistry and analytical methods are important, their coverage should not come at the expense of other equally important topics.

The introductory course in analytical chemistry is the ideal place in the undergraduate chemistry curriculum for exploring topics such as experimental design, sampling, calibration strategies, standardization,optimization, statistics, and the validation of experimental results. Analytical methods come and go, but best practices for designing and validating analytical methods are universal. Because chemistry is an experimental science it is essential that all chemistry students understand the importance of making good measurements.

My goal in preparing this textbook is to find a more appropriate balance between theory and practice, between “classical” and “modern” analytical methods, between analyzing samples and collecting samples and preparing them for analysis, and between analytical methods and data analysis. There is more material here than anyone can cover in one semester; it is my hope that the diversity of topics will meet the needs of different instructors, while, perhaps,suggesting some new topics to cover.

Reviews available here: https://open.umn.edu/opentextbooks/textbooks/analytical-chemistry-2-1

Subject:
Chemistry
Physical Science
Material Type:
Textbook
Provider:
DePauw University
Author:
David Harvey
Date Added:
06/20/2016
Analytical Chemistry Lab
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Analytical Chemistry Lab includes nine experiments to guide students in basic laboratory techniques related to the topics in Analytical Chemistry. This resource is designed to support a sophomore level specialized science course intentionally designed for students who are chemistry majors, medical laboratory science majors, or those biology majors who are having chemistry as a minor degree.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Author:
Gerard Dumancas
Date Added:
01/08/2021
Analytical Chemistry Lecture
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to techniques and practices of analytical chemistry. Topics will include: statistics, gravimetry, equilibrium, titration, spectroscopy, electrochemistry, chromatography. This resource is designed to support a sophomore level specialized science course intentionally designed for students who are chemistry majors, medical laboratory science majors, or those biology majors who are having chemistry as a minor degree.

Subject:
Chemistry
Physical Science
Material Type:
Textbook
Author:
John Allen
Gerard Dumancas
Date Added:
01/08/2021
Analytical Techniques for Studying Environmental and Geologic Samples, Spring 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is a laboratory course supplemented by lectures that focus on selected analytical facilities that are commonly used to determine the mineralogy, elemental abundance and isotopic ratios of Sr and Pb in rocks, soils, sediments and water.

Subject:
Geology
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Bowring, Samuel
Boyle, Edward
Chatterjee, Nilanjan
Dudas, Francis
Date Added:
01/01/2011
Ancillary Resources for OpenStax Chemistry, CHEM 1211 and 1212
Unrestricted Use
CC BY
Rating
0.0 stars

This open course with a new set of ancillary materials for OpenStax Chemistry was created under a Round Eleven Mini-Grant for Ancillary Materials Creation and Revision. The materials created in order to support faculty implementing OpenStax Psychology in the classroom include:

Lecture Slides
Chapter Checklists
Practice Problems
Newly-Created Videos

Along with these resources, the open course also contains a laboratory section with new instructional videos, a laboratory notebook and a sample notebook with responses, and experiments for each course.

Subject:
Chemistry
Physical Science
Material Type:
Homework/Assignment
Lecture
Author:
Erin Kingston
Georgia Highlands College
Sarah Tesar
Allen Easton
Date Added:
01/28/2021
Applications of Continuum Mechanics to Earth, Atmospheric, and Planetary Sciences, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Practical applications of the continuum concept for deformation of solids and fluids, emphasizing force balance. Stress tensor, infinitesimal and finite strain, and rotation tensors developed. Constitutive relations applicable to geological materials, including elastic, viscous, brittle, and plastic deformation. Solutions to classical problems in geodynamics.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Hager, Bradford H.
Date Added:
01/01/2006
Applications of Maxwell's Equations
Unrestricted Use
CC BY
Rating
0.0 stars

This book was developed at Simon Fraser University for an upper-level physics course. Along with a careful exposition of electricity and magnetism, it devotes a chapter to ferromagnets. According to the course description, the topics covered were “electromagnetics, magnetostatics, waves, transmission lines, wave guides, antennas, and radiating systems.”

Table of Contents
1 Maxwell's Equations
2 Electrostatic Field (I)
3 Electrostatic Field (II)
4 The Magnetostatic Field (I)
5 The Magnetostatic Field (II)
6 Ferromagnetism
7 Time Dependent Electromagnetic Fields
8 E.M. Fields and Energy Flow
9 Plane Waves (I)
10 Plane Waves (II)
11 Transmission Lines
12 Waveguides

Subject:
Physical Science
Physics
Material Type:
Textbook
Author:
Bretislav Heinrich
John Cochran
Date Added:
06/15/2020
Applied Geometric Algebra, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Laszlo Tisza was Professor of Physics Emeritus at MIT, where he began teaching in 1941. This online publication is a reproduction the original lecture notes for the course "Applied Geometric Algebra" taught by Professor Tisza in the Spring of 1976. Over the last 100 years, the mathematical tools employed by physicists have expanded considerably, from differential calculus, vector algebra and geometry, to advanced linear algebra, tensors, Hilbert space, spinors, Group theory and many others. These sophisticated tools provide powerful machinery for describing the physical world, however, their physical interpretation is often not intuitive. These course notes represent Prof. Tisza's attempt at bringing conceptual clarity and unity to the application and interpretation of these advanced mathematical tools. In particular, there is an emphasis on the unifying role that Group theory plays in classical, relativistic, and quantum physics. Prof. Tisza revisits many elementary problems with an advanced treatment in order to help develop the geometrical intuition for the algebraic machinery that may carry over to more advanced problems. The lecture notes came to MIT OpenCourseWare by way of Samuel Gasster, '77 (Course 18), who had taken the course and kept a copy of the lecture notes for his own reference. He dedicated dozens of hours of his own time to convert the typewritten notes into LaTeX files and then publication-ready PDFs. You can read about his motivation for wanting to see these notes published in his Preface below. Professor Tisza kindly gave his permission to make these notes available on MIT OpenCourseWare.

Subject:
Algebra
Mathematics
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Tisza, L
Date Added:
01/01/2009
Applied Nuclear Physics, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Fundamentals of nuclear physics for engineering students. Basic properties of the nucleus and nuclear radiations. Elementary quantum mechanical calculations of bound-state energies and barrier transmission probability. Binding energy and nuclear stability. Interactions of charged particles, neutrons, and gamma rays with matter. Radioactive decays. Energetics and general cross-section behavior in nuclear reactions.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Yip, Sidney
Date Added:
01/01/2006
Applying Lessons Learned to the Volcanic Risk at Mt. Rainier
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this jigsaw-method activity on subduction zone volcanism, students apply lessons learned from four historic eruptions to the volcanic hazards associated with Mt. Rainier in the Pacific Northwest.

Subject:
Geology
Physical Science
Material Type:
Activity/Lab
Game
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Laurel Goodell
Date Added:
04/04/2019
Aquatic Chemistry, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course details the quantitative treatment of chemical processes in aquatic systems such as lakes, oceans, rivers, estuaries, groundwaters, and wastewaters. It includes a brief review of chemical thermodynamics that is followed by discussion of acid-base, precipitation-dissolution, coordination, and reduction-oxidation reactions. Emphasis is on equilibrium calculations as a tool for understanding the variables that govern the chemical composition of aquatic systems and the fate of inorganic pollutants.

Subject:
Applied Science
Chemistry
Environmental Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Moffett, Jim
Seewald, Jeff
Tivey, Meg
Date Added:
01/01/2005
Assembling a Geologic History
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Through a higher-order integration of concepts and observations, students can combine information from several field labs, all discussed in the Starting Point collection, to construct an overall geologic history of the local region. This site details the learning goals, teaching notes and materials, method of assessment, and context of use of this lab. It also provides links to additional references and resources.

Subject:
Education
Geology
Higher Education
Physical Science
Material Type:
Activity/Lab
Reading
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Starting Point: Teaching Entry Level Geoscience
Author:
Mary Savina
Date Added:
04/04/2019
Astrodynamics, Fall 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This course covers the fundamentals of astrodynamics, focusing on the two-body orbital initial-value and boundary-value problems with applications to space vehicle navigation and guidance for lunar and planetary missions, including both powered flight and midcourse maneuvers. Other topics include celestial mechanics, Kepler's problem, Lambert's problem, orbit determination, multi-body methods, mission planning, and recursive algorithms for space navigation. Selected applications from the Apollo, Space Shuttle, and Mars exploration programs are also discussed."

Subject:
Astronomy
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Battin, Richard
Date Added:
01/01/2008
Astronomy
Unrestricted Use
CC BY
Rating
0.0 stars

Openstax Astronomy is designed to meet the scope and sequence requirements of one- or two-semester introductory astronomy courses. The book begins with relevant scientific fundamentals and progresses through an exploration of the solar system, stars, galaxies, and cosmology. The Astronomy textbook builds student understanding through the use of relevant analogies, clear and non-technical explanations, and rich illustrations. Mathematics is included in a flexible manner to meet the needs of individual instructors.

Subject:
Astronomy
Physical Science
Material Type:
Textbook
Author:
Andrew Fraknoi
David Morrison
Sidney C. Wolff
Date Added:
09/09/2019
Astronomy Lab
Unrestricted Use
CC BY
Rating
0.0 stars

Table of Contents:

I. Lab 1- Sunrise, Sunset- Moonrise, Moonset
II. Lab 2 - Constellations and the Night Sky
III. Lab 3 - Light Pollution and Observing
IV. Lab 4 - About Your Eyes
V. Lab 5 - Scaling the Solar System
VI. Lab 6 - Optics and Telescopes
VII. Lab 7 - Solar System Storms
VIII. Lab 8 - Meteors, Meteorites, and Cratering
IX. Lab 9 - The Hubble Space Telescope
X. Lab 10 - Star Colors and Spectroscopy
XI. Lab 11 - H-R Diagram
XII. Lab 12 - Hubble's Law Origins
XIII. Lab 13 - Planetarium, Astronomy Club/Observing

Subject:
Astronomy
Physical Science
Material Type:
Textbook
Author:
Lumen Learning
Florida State College At Jacksonville
Date Added:
04/14/2021