Ancillary materials for interactive statistics: 1: Random Number Generator 2: Completing a …
Ancillary materials for interactive statistics:
1: Random Number Generator 2: Completing a Frequency, Relative, and Cumulative Relative Frequency Table Activity 3: The Box Plot Creation Game 4: Online Calculator of the Mean and Median 5: Online Mean, Median, and Mode Calculator From a Frequency Table 6: Standard Deviation Calculator 7: Guess the Standard Deviation Game 8: Mean and Standard Deviation for Grouped Frequency Tables Calculator 9: Z-Score Calculator 10. Expected Value and Standard Deviation Calculator 11: Be the Player Or the Casino Expected Value Game 12: Binomial Distribution Calculator 13: Normal Probability Calculator 14: Calculator For the Sampling Distribution for Means 15: Discover the Central Limit Theorem Activity 16: Sampling Distribution Calculator for Sums 17: Observe the Relationship Between the Binomial and Normal Distributions 18: Confidence Interval Calculator for a Mean Calculator With Statistics (Sigma Unknown) 19: Visually Compare the Student's t Distribution to the Normal Distribution 20: Sample Size for a Mean Calculator 21: Confidence Interval for a Mean (With Data) Calculator 22: Interactively Observe the Effect of Changing the Confidence Level and the Sample Size 23: Confidence Interval for a Mean (With Statistics) Calculator 24: Confidence Interval Calculator for a Population Mean (With Data, Sigma Unknown) 25: Confidence Interval For Proportions Calculator 26: Needed Sample Size for a Confidence Interval for a Population Proportion Calculator 27: Hypothesis Test for a Population Mean Given Statistics Calculator 28: Hypothesis Test for a Population Mean With Data Calculator 29: Hypothesis Test for a Population Proportion Calculator 30: Two Independent Samples With Data Hypothesis Test and Confidence Interval Calculator 31: Two Independent Samples With Statistics and Known Population Standard Deviations Hypothesis Test and Confidence Interval Calculator 32: Two Independent Samples With Statistics Calculator 33: Hypothesis Test and Confidence Interval Calculator: Difference Between Population Proportions 34: Hypothesis Test and Confidence Interval Calculator for Two Dependent Samples 35: Visualize the Chi-Square Distribution 36: Chi-Square Goodness of Fit Test Calculator 37: Chi-Square Test For Independence Calculator 38: Chi-Square Test For Homogeneity Calculator 39: Scatter Plot Calculator 40: Scatter Plot, Regression Line, r,and r^2 Calculator 41: Full Regression Analysis Calculator 42: Shoot Down Money at the Correct Correlation Game 43: Visualize How Changing the Numerator and Denominator Degrees of Freedom Changes the Graph of the F-Distribution 44: ANOVA Calculator 45: Central Limit Theorem Activity
This course covers descriptive statistics, the foundation of statistics, probability and random …
This course covers descriptive statistics, the foundation of statistics, probability and random distributions, and the relationships between various characteristics of data. Upon successful completion of the course, the student will be able to: Define the meaning of descriptive statistics and statistical inference; Distinguish between a population and a sample; Explain the purpose of measures of location, variability, and skewness; Calculate probabilities; Explain the difference between how probabilities are computed for discrete and continuous random variables; Recognize and understand discrete probability distribution functions, in general; Identify confidence intervals for means and proportions; Explain how the central limit theorem applies in inference; Calculate and interpret confidence intervals for one population average and one population proportion; Differentiate between Type I and Type II errors; Conduct and interpret hypothesis tests; Compute regression equations for data; Use regression equations to make predictions; Conduct and interpret ANOVA (Analysis of Variance). (Mathematics 121; See also: Biology 104, Computer Science 106, Economics 104, Psychology 201)
Natural Resources Biometrics begins with a review of descriptive statistics, estimation, and …
Natural Resources Biometrics begins with a review of descriptive statistics, estimation, and hypothesis testing. The following chapters cover one- and two-way analysis of variance (ANOVA), including multiple comparison methods and interaction assessment, with a strong emphasis on application and interpretation. Simple and multiple linear regressions in a natural resource setting are covered in the next chapters, focusing on correlation, model fitting, residual analysis, and confidence and prediction intervals. The final chapters cover growth and yield models, volume and biomass equations, site index curves, competition indices, importance values, and measures of species diversity, association, and community similarity.
Welcome to behavioral statistics, a statistics textbook for social science majors! Table …
Welcome to behavioral statistics, a statistics textbook for social science majors!
Table of Contents Unit 1: Description 1: Introduction to Behavioral Statistics 2: What Do Data Look Like? (Graphs) 3: Descriptive Statistics 4: Distributions 5: Using z 6: APA Style Unit 2: Mean Differences 7: Inferential Statistics and Hypothesis Testing 8: One Sample t-test 9: Independent Samples t-test 10: Dependent Samples t-test 11: BG ANOVA 12: RM ANOVA 13: Factorial ANOVA (Two-Way) Unit 3: Relationships 14: Correlations 15: Regression 16: Chi-Square Unit 4: Wrap Up 17: Wrap Up
The R Project for statistical computing (R) is a programming language and …
The R Project for statistical computing (R) is a programming language and environment for statistics and graphing. Another commonly used programming language for statistics and data mining is Python. Both Python and R are easy to learn. If the primary purpose is statistical analysis, then R is usually preferred.Why learn/teach R? One of the major reasons why R is becoming more popular (TIOBE,2018) is that it is an open-source (i.e. free) software. Also, when dealing with a large number of variables, multiple datasets, and large samples, R is also a more efficient tool than traditional drop-down menu software such as SPSS. Finally, R programming is now very easy to use with the development of helpful packages.This open text will introduce R packages and step-by-step codes for conducting common statistical analyses in psychological research and classrooms. Funding acknowledgment: The author would like to thank the Society for the Teaching of Psychology (STP), American Psychological Association Division 2 Instructional Resource Award for their generous support of this project. This resource is licensed under the Creative Commons Attribution-ShareAlike4.0 International license (CC BY-SA4.0)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.