Updating search results...

Search Resources

134 Results

View
Selected filters:
  • physics
Strongly Correlated Systems in Condensed Matter Physics, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Study of condensed matter systems where interactions between electrons play an important role. Topics vary depending on lecturer but may include low-dimension magnetic and electronic systems, disorder and quantum transport, magnetic impurities (the Kondo problem), quantum spin systems, the Hubbard model and high temperature superconductors. Topics are chosen to illustrate the application of diagrammatic techniques, field theory approaches, and renormalization group methods in condensed matter physics. In this course we shall develop theoretical methods suitable for the description of the many-body phenomena, such as Hamiltonian second-quantized operator formalism, Greens functions, path integral, functional integral, and the quantum kinetic equation. The concepts to be introduced include, but are not limited to, the random phase approximation, the mean field theory (aka saddle-point, or semiclassical approximation), the tunneling dynamics in imaginary time, instantons, Berry phase, coherent state path integral, renormalization group.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Levitov, Leonid
Date Added:
01/01/2003
Systems Biology, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to quantitative methods and modeling techniques to address key questions in modern biology. Overview of quantitative modeling techniques in evolutionary biology, molecular biology and genetics, cell biology and developmental biology. Description of key experiments that validate models. Specific topics include: Evolutionary biology: theoretical models for evolution, evolution in test tube, evolution experiments with viruses and bacteria, complexity and evolution; Molecular biology and genetics: protein design, bioinformatics and genomics, constructing and modeling of genetic networks, control theory and genetic networks; Cell biology: forces and motion, cell motility, signal transduction pathways, chemotaxis and pheromone response; Development biology: pattern formation, self-organization, and models of Drosophila development.

Subject:
Biology
Natural Science
Physical Science
Physics
Psychology
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Oudenaarden, Alexander van
Date Added:
01/01/2004
Theory of Solids I, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

First term of a theoretical treatment of the physics of solids. Concept of elementary excitations. Symmetry: translational, rotational, and time-reversal invariances: theory of representations. Energy bands: APW, OPW, pseudopotential and LCAO schemes. Survey of electronic structure of metals, semimetals, semiconductors, and insulators. Excitons. Critical points. Response functions. Interactions in the electron gas.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Lee, Patrick A.
Date Added:
01/01/2004
Toward the Scientific Revolution, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The emergence of Western science: the systematization of natural knowledge in the ancient world, the transmission of the classical legacy to the Latin West, and the revolt from classical thought during the scientific revolution. Examines scientific concepts in light of their cultural and historical contexts.

Subject:
Arts and Humanities
Astronomy
Physical Science
Physics
World Cultures
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kaiser, David
Date Added:
01/01/2003
University Physics I: Classical Mechanics
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This is a “minimalist” textbook for a first semester of university, calculus-based physics, covering classical mechanics (including one chapter on mechanical waves, but excluding fluids), plus a brief introduction to thermodynamics. The presentation owes much to Mazur’s The Principles and Practice of Physics: conservation laws, momentum and energy, are introduced before forces, and one-dimensional setups are thoroughly explored before two-dimensional systems are considered. It contains both problems and worked-out examples.

About the Book
This is a “minimalist” textbook for a first semester of university, calculus-based physics, covering classical mechanics (including one chapter on mechanical waves, but excluding fluids), plus a brief introduction to thermodynamics. The presentation owes much to Mazur’s The Principles and Practice of Physics: conservation laws, momentum and energy, are introduced before forces, and one-dimensional setups are thoroughly explored before two-dimensional systems are considered. It contains both problems and worked-out examples.

About the Contributors
Author
Julio Gea-Banacloche, University of Arkansas, Fayetteville

Subject:
Physical Science
Physics
Material Type:
Textbook
Author:
Julio Gea-Banacloche
Date Added:
06/23/2020
University Physics I: Classical Mechanics
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This is a “minimalist” textbook for a first semester of university, calculus-based physics, covering classical mechanics (including one chapter on mechanical waves, but excluding fluids), plus a brief introduction to thermodynamics. The presentation owes much to Mazur’s The Principles and Practice of Physics: conservation laws, momentum and energy, are introduced before forces, and one-dimensional setups are thoroughly explored before two-dimensional systems are considered. It contains both problems and worked-out examples.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
University of Arkansas
Author:
Julio Gea-Banacloche
Date Added:
02/08/2019
University Physics Volume 1
Unrestricted Use
CC BY
Rating
0.0 stars

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax College
Author:
Alice Kolakowska
Bill Moebs
Daniel Bowman
David Anderson
David Smith
Dedra Demaree
Edward S. Ginsberg
Gerald Friedman
Joseph Trout
Kenneth Podolak
Kevin Wheelock
Lee LaRue
Lev Gasparov
Mark Lattery
Patrick Motl
Richard Ludlow
Samuel J. Ling
Takashi Sato
Tao Pang
Date Added:
08/03/2016
University Physics Volume 1
Unrestricted Use
CC BY
Rating
0.0 stars

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.

Table of Contents
Preface
Unit 1. Mechanics

Chapter 1: Units and Measurement
Chapter 2: Vectors
Chapter 3: Motion Along a Straight Line
Chapter 4: Motion in Two and Three Dimensions
Chapter 5: Newton's Laws of Motion
Chapter 6: Applications of Newton's Laws
Chapter 7: Work and Kinetic Energy
Chapter 8: Potential Energy and Conservation of Energy
Chapter 9: Linear Momentum and Collisions
Chapter 10: Fixed-Axis Rotation
Chapter 11: Angular Momentum
Chapter 12: Static Equilibrium and Elasticity
Chapter 13: Gravitation
Chapter 14: Fluid Mechanics
Unit 2. Waves and Acoustics

Chapter 15: Oscillations
Chapter 16: Waves
Chapter 17: Sound
Appendix A: Units
Appendix B: Conversion Factors
Appendix C: Fundamental Constants
Appendix D: Astronomical Data
Appendix E: Mathematical Formulas
Appendix F: Chemistry
Appendix G: The Greek Alphabet
Index

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax College
Author:
Alice Kolakowska
Bill Moebs
Daniel Bowman
David Anderson
David Smith
Dedra Demaree
Edward S. Ginsberg
Gerald Friedman
Joseph Trout
Kenneth Podolak
Kevin Wheelock
Lee LaRue
Lev Gasparov
Mark Lattery
Patrick Motl
Richard Ludlow
Samuel J. Ling
Takashi Sato
Tao Pang
Date Added:
08/03/2016
University Physics Volume 3
Unrestricted Use
CC BY
Rating
0.0 stars

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax College
Author:
Jeff Sanny
Samuel Ling
Date Added:
10/26/2023
University Physics, Volume 3
Unrestricted Use
CC BY
Rating
0.0 stars

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.

Table of Contents
Unit 1: Optics

Chapter 1: The Nature of Light
Chapter 2: Geometric Optics and Image Formation
Chapter 3: Interference
Chapter 4: Diffraction
Unit 2: Modern Physics

Chapter 5: Relativity
Chapter 6: Photons and Matter Waves
Chapter 7: Quantum Mechanics
Chapter 8: Atomic Structure
Chapter 9: Condensed Matter Physics
Chapter 10: Nuclear Physics
Chapter 11: Particle Physics and Cosmology

Subject:
Physical Science
Physics
Material Type:
Textbook
Author:
Samuel Ling
Jeff Sanny
Date Added:
06/23/2020
Variational Principles in Classical Mechanics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Two dramatically different philosophical approaches to classical mechanics were proposed during the 17th – 18th centuries. Newton developed his vectorial formulation that uses time-dependent differential equations of motion to relate vector observables like force and rate of change of momentum. Euler, Lagrange, Hamilton, and Jacobi, developed powerful alternative variational formulations based on the assumption that nature follows the principle of least action. These variational formulations now play a pivotal role in science and engineering.

This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared. Applications to a wide variety of topics illustrate the intellectual beauty, remarkable power, and broad scope provided by use of variational principles in physics.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
University of Rochester
Author:
Douglas Cline
Date Added:
04/24/2019
Υπολογιστική Φυσική: Ένα βιβλίο του Κωνσταντίνου Αναγνωστόπουλου - δεύτερη έκδοση (Computational Physics)
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Το βιβλίο αυτό είναι μια εισαγωγή στις υπολογιστικές μεθόδους που χρησιμοποιούνται στη φυσική και άλλα επιστημονικά πεδία. Απευθύνεται σε κοινό που έχει ήδη εκτεθεί σε μαθήματα γενικής φυσικής που διδάσκονται στα δύο πρώτα έτη πανεπιστημιακών τμημάτων θετικών επιστημών και επιστημών του μηχανικού. Δεν υποθέτει κανένα υπόβαθρο αριθμητικής ανάλυσης, προγραμματισμού ή χρήσης υπολογιστή και παρουσιάζει ό,τι είναι απαραίτητο για την επίλυση των προβλημάτων που παρουσιάζονται στο βιβλίο. Μπορεί να χρησιμοποιηθεί ως κύριο σύγγραμμα σε εισαγωγικά μαθήματα υπολογιστικής φυσικής και επιστημονικού προγραμματισμού.

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
National Technical University of Athens
Author:
Anagnostopoulos, Konstantinos
Date Added:
10/26/2023