This class analyzes complex biological processes from the molecular, cellular, extracellular, and …
This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemical and quantitative views of the interplay of multiple pathways as biological networks are emphasized. Student work will culminate in the preparation of a unique grant application in an area of biological networks.
The goal of this course is to teach both the fundamentals of …
The goal of this course is to teach both the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Lectures and class discussions will cover the background and fundamental findings in a particular area of nuclear cell biology. The assigned readings will provide concrete examples of the experimental approaches and logic used to establish these findings. Some examples of topics include genome and systems biology, transcription, and gene expression.
Genetics is the branch of biology that studies the means by which …
Genetics is the branch of biology that studies the means by which traits are passed on from one generation to the next and the causes of similarities and differences between related individuals. In this course, the student will take a close look at chromosomes, DNA, and genes. The student will learn how hereditary information is transferred, how it can change, how it can lead to human disease and be tested to indicate disease, and much more. Upon successful completion of this course, students will be able to: give a brief synopsis of the history of genetics by explaining the fundamental genetic concepts covered in this course as they were discovered through time; identify the links between Mendel's discoveries (often represented by Punnett squares) with mitosis and meiosis, dominance, penetrance, and linkage; recognize the role of simple probability in genetic inheritance; apply advanced genetic concepts, including genetic mapping and transposons, to practical applications, including pedigree analysis and corn kernel color; identify the cause behind several genetic diseases currently prevalent in society (such as color blindness and hemophilia) and recognize the importance of genetic illness throughout history; compare and contrast advanced concepts of chromosomal, bacterial, human, and population genetics; recognize the similarities and differences between nuclear, chloroplast, and mitochondrial DNA; describe the fundamentals of population genetics, calculate gene frequencies in a give scenario, predict future gene frequencies over future generations, and define the role of evolution in gene frequency shift over time; recall, analyze, synthesize, and build on the foundational material to then learn the cutting-edge technological advances in genetics, including genomics, population and evolutionary genetics, and QTL mapping. (Biology 305)
The principles of genetics with application to the study of biological function …
The principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. Structure and function of genes, chromosomes and genomes. Biological variation resulting from recombination, mutation, and selection. Population genetics. Use of genetic methods to analyze protein function, gene regulation and inherited disease.
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover …
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.
After a historical introduction to molecular biology, this course describes the basic …
After a historical introduction to molecular biology, this course describes the basic types of DNA and RNA structure and the molecular interactions that shape them. It describes how DNA is packaged within the cellular nucleus as chromosomes. It also describes the core processes of molecular biology: replication of DNA, transcription of DNA into messenger RNA, and translation of messenger RNA into a protein. These are followed by modifications of these basic processes: regulation of gene expression, DNA mutation and repair, and DNA recombination and transposition. Upon successful completion of this course, students will be able to: discuss the experimental findings that lead to the discovery of inheritance laws; discuss the experimental findings that lead to the identification of DNA as the hereditary material; compare and contrast the structure and function of mRNA, rRNA, tRNA, and DNA; identify the characteristics of catalyzed reactions; compare and contrast enzyme and ribozyme catalyzed reactions; discuss the structure of the chromosome and the consequence of histone modifications in eukaryotes; discuss the stages of transcription, differential splicing, and RNA turnover; predict the translation product of an mRNA using the genetic code; compare and contrast transcription and translation in prokaryotes and eukaryotes; identify codon bias and variations of the standard genetic code; compare and contrast the regulation of prokaryotic and eukaryotic gene expression; predict the activation of an operon and tissue specific gene expression based on the availability of regulators; compare and contrast mutations based on their effect on the gene product; discuss DNA repair mechanisms; discuss DNA recombination, transposition, and the consequence of exon shuffling; design custom-made recombinant DNA using PCR, restriction enzymes, and site-directed mutagenesis; compare and contrast the uses of model organisms; discuss the uses of model organisms in specific molecular biology applications. (Biology 311)
Psychology is designed to meet scope and sequence requirements for the single-semester …
Psychology is designed to meet scope and sequence requirements for the single-semester introduction to psychology course. The book offers a comprehensive treatment of core concepts, grounded in both classic studies and current and emerging research. The text also includes coverage of the DSM-5 in examinations of psychological disorders. Psychology incorporates discussions that reflect the diversity within the discipline, as well as the diversity of cultures and communities across the globe.Senior Contributing AuthorsRose M. Spielman, Formerly of Quinnipiac UniversityContributing AuthorsKathryn Dumper, Bainbridge State CollegeWilliam Jenkins, Mercer UniversityArlene Lacombe, Saint Joseph's UniversityMarilyn Lovett, Livingstone CollegeMarion Perlmutter, University of Michigan
By the end of this section, you will be able to: Explain …
By the end of this section, you will be able to:
Explain what a correlation coefficient tells us about the relationship between variables Recognize that correlation does not indicate a cause-and-effect relationship between variables Discuss our tendency to look for relationships between variables that do not really exist Explain random sampling and assignment of participants into experimental and control groups Discuss how experimenter or participant bias could affect the results of an experiment Identify independent and dependent variables
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.