This course develops the fundamentals of feedback control using linear transfer function …
This course develops the fundamentals of feedback control using linear transfer function system models. Topics covered include analysis in time and frequency domains; design in the s-plane (root locus) and in the frequency domain (loop shaping); describing functions for stability of certain non-linear systems; extension to state variable systems and multivariable control with observers; discrete and digital hybrid systems and use of z-plane design. Students will complete an extended design case study. Students taking the graduate version (2.140) will attend the recitation sessions and complete additional assignments.
This class analyzes complex biological processes from the molecular, cellular, extracellular, and …
This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemical and quantitative views of the interplay of multiple pathways as biological networks are emphasized. Student work will culminate in the preparation of a unique grant application in an area of biological networks.
The goal of this course is to investigate with students backgrounds on …
The goal of this course is to investigate with students backgrounds on some of the pivotal events that have shaped our understanding and approach to architecture. Emphasis of discussion will be primarily on buildings and works of individual architects. Canonical architects, buildings and movements that have exerted significant influences on the development of architecture will be studied in detail. We will visit some of these buildings for a first-hand look and to evaluate for ourselves their significance or lack thereof. As a final project, each student will analyze a building through drawings, text, bibliography and a physical model in a format ready for documentation and exhibition.
An analysis of historical structures is presented in this class, presented in …
An analysis of historical structures is presented in this class, presented in themed sections based around construction materials. Structures from all periods of history are analyzed. The goal of the class is to provide an understanding of the preservation of historic structures for all students.
Analytical chemistry is the branch of chemistry dealing with measurement, both qualitative …
Analytical chemistry is the branch of chemistry dealing with measurement, both qualitative and quantitative. This discipline is also concerned with the chemical composition of samples. In the field, analytical chemistry is applied when detecting the presence and determining the quantities of chemical compounds, such as lead in water samples or arsenic in tissue samples. It also encompasses many different spectrochemical techniques, all of which are used under various experimental conditions. This branch of chemistry teaches the general theories behind the use of each instrument as well analysis of experimental data. Upon successful completion of this course, the student will be able to: Demonstrate a mastery of various methods of expressing concentration; Use a linear calibration curve to calculate concentration; Describe the various spectrochemical techniques as described within the course; Use sample data obtained from spectrochemical techniques to calculate unknown concentrations or obtain structural information where applicable; Describe the various chromatographies described within this course and analyze a given chromatogram; Demonstrate an understanding of electrochemistry and the methods used to study the response of an electrolyte through current of potential. (Chemistry 108)
Analytical chemistry spans nearly all areas of chemistry but involves the development …
Analytical chemistry spans nearly all areas of chemistry but involves the development of tools and methods to measure physical properties of substances and apply those techniques to the identification of their presence (qualitative analysis) and quantify the amount present (quantitative analysis) of species in a wide variety of settings.
Analytical chemistry is more than a collection of analytical methods and an …
Analytical chemistry is more than a collection of analytical methods and an understanding of equilibrium chemistry; it is an approach to solving chemical problems. Although equilibrium chemistry and analytical methods are important, their coverage should not come at the expense of other equally important topics. The introductory course in analytical chemistry is the ideal place in the undergraduate chemistry curriculum for exploring topics such as experimental design, sampling, calibration strategies, standardization, optimization, statistics, and the validation of experimental results. Analytical methods come and go, but best practices for designing and validating analytical methods are universal. Because chemistry is an experimental science it is essential that all chemistry students understand the importance of making good measurements.
As currently taught in the United States, introductory courses in analytical chemistryemphasize …
As currently taught in the United States, introductory courses in analytical chemistryemphasize quantitative (and sometimes qualitative) methods of analysis along with a heavydose of equilibrium chemistry. Analytical chemistry, however, is much more than a collection ofanalytical methods and an understanding of equilibrium chemistry; it is an approach to solvingchemical problems. Although equilibrium chemistry and analytical methods are important, theircoverage should not come at the expense of other equally important topics.
The introductory course in analytical chemistry is the ideal place in the undergraduate chemistry curriculum forexploring topics such as experimental design, sampling, calibration strategies, standardization,optimization, statistics, and the validation of experimental results. Analytical methods comeand go, but best practices for designing and validating analytical methods are universal. Becausechemistry is an experimental science it is essential that all chemistry students understand theimportance of making good measurements.
My goal in preparing this textbook is to find a more appropriate balance between theoryand practice, between “classical” and “modern” analytical methods, between analyzing samplesand collecting samples and preparing them for analysis, and between analytical methods anddata analysis. There is more material here than anyone can cover in one semester; it is myhope that the diversity of topics will meet the needs of different instructors, while, perhaps,suggesting some new topics to cover.
Analytical Chemistry Lab includes nine experiments to guide students in basic laboratory …
Analytical Chemistry Lab includes nine experiments to guide students in basic laboratory techniques related to the topics in Analytical Chemistry. This resource is designed to support a sophomore level specialized science course intentionally designed for students who are chemistry majors, medical laboratory science majors, or those biology majors who are having chemistry as a minor degree.
Syllabus for Analytical Chemistry Lab, a sophomore level specialized science course intentionally …
Syllabus for Analytical Chemistry Lab, a sophomore level specialized science course intentionally designed for students who are chemistry majors, medical laboratory science majors, or those biology majors who are having chemistry as a minor degree.
Introduction to techniques and practices of analytical chemistry. Topics will include: statistics, …
Introduction to techniques and practices of analytical chemistry. Topics will include: statistics, gravimetry, equilibrium, titration, spectroscopy, electrochemistry, chromatography. This resource is designed to support a sophomore level specialized science course intentionally designed for students who are chemistry majors, medical laboratory science majors, or those biology majors who are having chemistry as a minor degree.
Syllabus for Analytical Chemistry Lecture, which provides an introduction to techniques and practices …
Syllabus for Analytical Chemistry Lecture, which provides an introduction to techniques and practices of analytical chemistry. Topics will include: statistics, gravimetry, equilibrium, titration, spectroscopy, electrochemistry, chromatography. This resource is designed to support a sophomore level specialized science course intentionally designed for students who are chemistry majors, medical laboratory science majors, or those biology majors who are having chemistry as a minor degree.
This subject is designed to inform students on the analytical foundations of …
This subject is designed to inform students on the analytical foundations of inviscid subsonic aerodynamics. A primary goal of this subject is to equip students with the scientific rigor, applied mathematical complexity, and physical understanding that form the foundation of classical subsonic aerodynamics. Perturbation methods that both simplify mathematical complexity and expand physical understanding of critical phenomenon in fluid flow provides a framework for the subject. The subject offers lectures in classical subsonic aerodynamics at the graduate level on inviscid, subsonic, steady flow over slender aerodynamic bodies. Topics will be selected from: fundamentals of fluid mechanics [review]; singular-perturbation methods; similitude; subsonic flows with axial symmetry; linearized subsonic flow; slender body theory; similarity rules for subsonic flows; two-dimensional flow past a wave-shaped wall; thin wing theory; Kaplan’s higher approximations.
This is a laboratory course supplemented by lectures that focus on selected …
This is a laboratory course supplemented by lectures that focus on selected analytical facilities that are commonly used to determine the mineralogy, elemental abundance and isotopic ratios of Sr and Pb in rocks, soils, sediments and water.
Analytic epidemiological studies aim to investigate and identify factors associated with the …
Analytic epidemiological studies aim to investigate and identify factors associated with the presence of disease within populations, through the investigation of factors which may vary between individual members of these populations. Details on study designs appropriate for these investigations are given elsewhere. Conceptually, this involves investigating the disease experience amongst different 'groups' of animals within an overall population, distinguished according to the factor(s) of interest. These factors can be classified as one of the components of the 'epidemiological triad' of Host, Agent and Environment, many of which are closely interrelated with each other.
This course presents real-world examples in which quantitative methods provide a significant …
This course presents real-world examples in which quantitative methods provide a significant competitive edge that has led to a first order impact on some of today's most important companies. We outline the competitive landscape and present the key quantitative methods that created the edge (data-mining, dynamic optimization, simulation), and discuss their impact.
This course covers the key quantitative methods of finance: financial econometrics and …
This course covers the key quantitative methods of finance: financial econometrics and statistical inference for financial applications; dynamic optimization; Monte Carlo simulation; stochastic (ItĺŞ) calculus. These techniques, along with their computer implementation, are covered in depth. Application areas include portfolio management, risk management, derivatives, and proprietary trading.
"This course teaches students how to understand the rationality behind how organizations …
"This course teaches students how to understand the rationality behind how organizations and their programs behave, and to be comfortable and analytical with a live organization. It thereby builds analytic skills for evaluating programs and projects, organizations, and environments. It draws on the literature of the sociology of organizations, political science, public administration, and historical experience-and is based on both developing-country and developed-country experience."
" This course focuses on alternative ways in which the issues of …
" This course focuses on alternative ways in which the issues of growth, restructuring, innovation, knowledge, learning, and accounting and measurements can be examined, covering both industrialized and emerging countries. We give special emphasis to recent transformations in regional economies throughout the world and to the implications these changes have for the theories and research methods used in spatial economic analyses. Readings will relate mainly to the United States, but we cover pertinent material on foreign countries in lectures."
This book provides an introduction to the study of meaning in human …
This book provides an introduction to the study of meaning in human language, from a linguistic perspective. It covers a fairly broad range of topics, including lexical semantics, compositional semantics, and pragmatics. The chapters are organized into six units: (1) Foundational concepts; (2) Word meanings; (3) Implicature (including indirect speech acts); (4) Compositional semantics; (5) Modals, conditionals, and causation; (6) Tense & aspect.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.