The inspiration for this text grew out of a simple question that …
The inspiration for this text grew out of a simple question that emerged over a number of years of teaching math to Middle School, High School and College students.
Practically speaking, what is the origin of a particular polynomial?
So much time is spent analyzing, factoring, simplifying and graphing polynomials that it is easy to lose sight of the fact that polynomials have a wealth of practical uses. Exploring the techniques of interpolating data allows us to view the development and birth of a polynomial. This text is focused on laying a foundation for understanding and applying several common forms of polynomial interpolation. The principal goals of the text are:
1). Breakdown the process of developing polynomials to demonstrate and give the student a feel for the process and meaning of developing estimates of the trend (s) a collection of data may represent.
2).Introduce basic matrix algebra to assist students with understanding the process without getting bogged down in purely manual calculations. Some manual calculations have been included, however, to assist with understanding the concept.
3).Assist students in building a basic foundation allowing them to add additional techniques, of which there are many, not covered in this text.
The Art of the Probable" addresses the history of scientific ideas, in …
The Art of the Probable" addresses the history of scientific ideas, in particular the emergence and development of mathematical probability. But it is neither meant to be a history of the exact sciences per se nor an annex to, say, the Course 6 curriculum in probability and statistics. Rather, our objective is to focus on the formal, thematic, and rhetorical features that imaginative literature shares with texts in the history of probability. These shared issues include (but are not limited to): the attempt to quantify or otherwise explain the presence of chance, risk, and contingency in everyday life; the deduction of causes for phenomena that are knowable only in their effects; and, above all, the question of what it means to think and act rationally in an uncertain world. Our course therefore aims to broaden students’ appreciation for and understanding of how literature interacts with--both reflecting upon and contributing to--the scientific understanding of the world. We are just as centrally committed to encouraging students to regard imaginative literature as a unique contribution to knowledge in its own right, and to see literary works of art as objects that demand and richly repay close critical analysis. It is our hope that the course will serve students well if they elect to pursue further work in Literature or other discipline in SHASS, and also enrich or complement their understanding of probability and statistics in other scientific and engineering subjects they elect to take.
This free online textbook is a one semester course in basic analysis. …
This free online textbook is a one semester course in basic analysis. These were my lecture notes for teaching Math 444 at the University of Illinois at Urbana-Champaign (UIUC) in fall 2009. The course is a first course in mathematical analysis aimed at students who do not necessarily wish to continue a graduate study in mathematics. A Sample Darboux sums prerequisite for the course is a basic proof course. The course does not cover topics such as metric spaces, which a more advanced course would. It should be possible to use these notes for a beginning of a more advanced course, but further material should be added.
Access also available here: https://www.jirka.org/ra/
Table of Contents Introduction 1 Real Numbers 2 Sequences and Series 3 Continuous Functions 4 The Derivative 5 The Riemann Integral 6 Sequences of Functions 7 Metric Spaces
This free online textbook is a one semester course in basic analysis. …
This free online textbook is a one semester course in basic analysis. These were my lecture notes for teaching Math 444 at the University of Illinois at Urbana-Champaign (UIUC) in fall 2009. The course is a first course in mathematical analysis aimed at students who do not necessarily wish to continue a graduate study in mathematics. A Sample Darboux sums prerequisite for the course is a basic proof course. The course does not cover topics such as metric spaces, which a more advanced course would. It should be possible to use these notes for a beginning of a more advanced course, but further material should be added.
The rationale of teaching Basic mathematics is that it plays the role …
The rationale of teaching Basic mathematics is that it plays the role of filling up gaps that the student teacher could be having from secondary school mathematics. For instance, a lack of a proper grasp of the real number system and elementary functions etc. It also serves as the launching pad to University Mathematics by introducing the learner to the science of reasoning called logic and other related topics.
Beginning Algebra Made Useful addresses the needs of learners to make sense …
Beginning Algebra Made Useful addresses the needs of learners to make sense of algebra by quantifying and generalizing everyday occurrences such as commuting to work, buying gas or pizza, and determining the better deal. It requires learners to actively engage with algebraic concepts through physical and thought experiments in ways that help them connect ideas, representations, and contexts, and solve problems that arise in their daily lives. The text helps learners grow their brains and develop growth mindsets as they learn algebra conceptually. Problem sets continue the process, extending work begun in each lesson, applying new understandings to new contexts, and considering ideas that arise more fully in upcoming lessons. Longer assignments that can be used as group projects are included in the text. Group work is encouraged throughout the text; suggestions for orchestrating group work are included.
The text is open access and free for download by students and instructors in .pdf format. In the electronic format, graphics are in full color and there are live html links to resources, software, and applets.
Table of Contents: Chapter 1: Getting Ready to Learn Mathematics Chapter 2: Proportional Reasoning and Linear Functions Chapter 3: Using Linear Functions to Solve Problems Chapter 4: Introduction to Quadratic Functions
Study of an area of current interest in theoretical computer science. Topic …
Study of an area of current interest in theoretical computer science. Topic varies from term to term. This course is a study of Behavior of Algorithms and covers an area of current interest in theoretical computer science. The topics vary from term to term. During this term, we discuss rigorous approaches to explaining the typical performance of algorithms with a focus on the following approaches: smoothed analysis, condition numbers/parametric analysis, and subclassing inputs.
This short text is designed more for self-study or review than for …
This short text is designed more for self-study or review than for classroom use; full solutions are given for nearly all the end-of-chapter problems. For a more traditional text designed for classroom use, see Fundamentals of Calculus (http://www.lightandmatter.com/fund/). The focus is mainly on integration and differentiation of functions of a single variable, although iterated integrals are discussed. Infinitesimals are used when appropriate, and are treated more rigorously than in old books like Thompson's Calculus Made Easy, but in less detail than in Keisler's Elementary Calculus: An Approach Using Infinitesimals. Numerical examples are given using the open-source computer algebra system Yacas, and Yacas is also used sometimes to cut down on the drudgery of symbolic techniques such as partial fractions. Proofs are given for all important results, but are often relegated to the back of the book, and the emphasis is on teaching the techniques of calculus rather than on abstract results.
This textbook was written to meet the needs of a twenty-first century …
This textbook was written to meet the needs of a twenty-first century student. It takes a systematic approach to helping students learn how to think and centers on a structured process termed the PUPP Model (Plan, Understand, Perform, and Present). This process is found throughout the text and in every guided example to help students develop a step-by-step problem-solving approach.
This textbook simplifies and integrates annuity types and variable calculations, utilizes relevant algebraic symbols, and is integrated with the Texas Instruments BAII+ calculator. It also contains structured exercises, annotated and detailed formulas, and relevant personal and professional applications in discussion, guided examples, case studies, and even homework questions.
Published in 1991 by Wellesley-Cambridge Press, the book is a useful resource …
Published in 1991 by Wellesley-Cambridge Press, the book is a useful resource for educators and self-learners alike. It is well organized, covers single variable and multivariable calculus in depth, and is rich with applications.
In addition to the Textbook, there is also an online Instructor's Manual and a student Study Guide. Prof. Strang has also developed a related series of videos, Highlights of Calculus, on the basic ideas of calculus.
Differential calculus in one and several dimensions. Java applets and spreadsheet assignments. …
Differential calculus in one and several dimensions. Java applets and spreadsheet assignments. Vector algebra in 3D, vector- valued functions, gradient, divergence and curl, Taylor series, numerical methods and applications. Given in the first half of the first term. However, those wishing credit for 18.013A only, must attend the entire semester. Prerequisites: a year of high school calculus or the equivalent, with a score of 4 or 5 on the AB, or the AB portion of the BC, Calculus test, or an equivalent score on a standard international exam, or a passing grade on the first half of the 18.01 Advanced Standing exam.
This course analyzes combinatorial problems and methods for their solution. Topics include: …
This course analyzes combinatorial problems and methods for their solution. Topics include: enumeration, generating functions, recurrence relations, construction of bijections, introduction to graph theory, network algorithms, and extremal combinatorics.
Thorough treatment of linear programming and combinatorial optimization. Topics include network flow, …
Thorough treatment of linear programming and combinatorial optimization. Topics include network flow, matching theory, matroid optimization, and approximation algorithms for NP-hard problems. 18.310 helpful but not required.
Content varies from year to year. An introduction to some of the …
Content varies from year to year. An introduction to some of the major topics of present day combinatorics, in particular enumeration, partially ordered sets, and generating functions. This is a graduate-level course in combinatorial theory. The content varies year to year, according to the interests of the instructor and the students. The topic of this course is hyperplane arrangements, including background material from the theory of posets and matroids.
Content varies from year to year. An introduction to some of the …
Content varies from year to year. An introduction to some of the major topics of present day combinatorics, in particular enumeration, partially ordered sets, and generating functions. This course serves as an introduction to major topics of modern enumerative and algebraic combinatorics with emphasis on partition identities, young tableaux bijections, spanning trees in graphs, and random generation of combinatorial objects. There is some discussion of various applications and connections to other fields.
All of the mathematics required beyond basic calculus is developed “from scratch.” …
All of the mathematics required beyond basic calculus is developed “from scratch.” Moreover, the book generally alternates between “theory” and “applications”: one or two chapters on a particular set of purely mathematical concepts are followed by one or two chapters on algorithms and applications; the mathematics provides the theoretical underpinnings for the applications, while the applications both motivate and illustrate the mathematics. Of course, this dichotomy between theory and applications is not perfectly maintained: the chapters that focus mainly on applications include the development of some of the mathematics that is specific to a particular application, and very occasionally, some of the chapters that focus mainly on mathematics include a discussion of related algorithmic ideas as well.
The mathematical material covered includes the basics of number theory (including unique factorization, congruences, the distribution of primes, and quadratic reciprocity) and of abstract algebra (including groups, rings, fields, and vector spaces). It also includes an introduction to discrete probability theory—this material is needed to properly treat the topics of probabilistic algorithms and cryptographic applications. The treatment of all these topics is more or less standard, except that the text only deals with commutative structures (i.e., abelian groups and commutative rings with unity) — this is all that is really needed for the purposes of this text, and the theory of these structures is much simpler and more transparent than that of more general, non-commutative structures.
Access also available here: https://shoup.net/ntb/
Table of Contents 1 Basic properties of the integers 2 Congruences 3 Computing with large integers 4 Euclid's algorithm 5 The distribution of primes 6 Abelian groups 7 Rings 8 Finite and discrete probability distributions 9 Probabilistic algorithms 10 Probabilistic primality testing 11 Finding generators and discrete logarithms in Z∗p 12 Quadratic reciprocity and computing modular square roots 13 Modules and vector spaces 14 Matrices 15 Subexponential-time discrete logarithms and factoring 16 More rings 17 Polynomial arithmetic and applications 18 Finite Fields 19 Linearly generated sequences and applications 20 Algorithms for finite fields 21 Deterministic primality testing
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.