Updating search results...

Search Resources

20 Results

View
Selected filters:
  • mutation
Biology 2e
Unrestricted Use
CC BY
Rating
0.0 stars

Biology 2e is designed to cover the scope and sequence requirements of a typical two-semester biology course for science majors. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology includes rich features that engage students in scientific inquiry, highlight careers in the biological sciences, and offer everyday applications. The book also includes various types of practice and homework questions that help students understand—and apply—key concepts. The 2nd edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Art and illustrations have been substantially improved, and the textbook features additional assessments and related resources.

Subject:
Biology
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
03/07/2018
Biology 2e, Evolutionary Processes, The Evolution of Populations, Population Genetics
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Describe the different types of variation in a population
Explain why only natural selection can act upon heritable variation
Describe genetic drift and the bottleneck effect
Explain how each evolutionary force can influence a population's allele frequencies

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology 2e, The Cell, Cell Reproduction, Cancer and the Cell Cycle
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Describe how cancer is caused by uncontrolled cell growth
Understand how proto-oncogenes are normal cell genes that, when mutated, become oncogenes
Describe how tumor suppressors function
Explain how mutant tumor suppressors cause cancer

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology, The Cell
Unrestricted Use
CC BY
Rating
0.0 stars

Biology, The Cell is an unit of study no. 3 of the Biology full course. It is grounded on studying cells, including cell structure, structure and function of plasma membranes, metabolism, cellular respiration, photosynthesis, cell communication, and cell reproduction.

Subject:
Biology
Histology
Natural Science
Material Type:
Diagram/Illustration
Module
Unit of Study
Date Added:
03/26/2019
Cancer Biology: From Basic Research to the Clinic, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Seminar covering topics of current interest in biology. Includes reading and analysis of research papers and student presentations. Contact Biology Education Office for topics. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. In 1971, President Nixon declared the "War on Cancer," but after three decades the war is still raging. How much progress have we made toward winning the war and what are we doing to improve the fight? Understanding the molecular and cellular events involved in tumor formation, progression, and metastasis is crucial to the development of innovative therapy for cancer patients. Insights into these processes have been gleaned through basic research using biochemical, molecular, and genetic analyses in yeast, C. elegans, mice, and cell culture models. We will explore the laboratory tools and techniques used to perform cancer research, major discoveries in cancer biology, and the medical implications of these breakthroughs. A focus of the class will be critical analysis of the primary literature to foster understanding of the strengths and limitations of various approaches to cancer research. Special attention will be made to the clinical implications of cancer research performed in model organisms and the prospects for ending the battle with this devastating disease.

Subject:
Biology
Natural Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Haigis, Kevin
Kim, Carla
Date Added:
01/01/2004
Directed Evolution: Engineering Biocatalysts, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Enzymes, nature's catalysts, are remarkable biomolecules capable of extraordinary specificity and selectivity. Directed evolution has been used to produce enzymes with many unique properties, including altered substrate specificity, thermal stability, organic solvent resistance, and enantioselectivity--selectivity of one stereoisomer over another. The technique of directed evolution comprises two essential steps: mutagenesis of the gene encoding the enzyme to produce a library of variants, and selection of a particular variant based on its desirable catalytic properties. In this course we will examine what kinds of enzymes are worth evolving and the strategies used for library generation and enzyme selection. We will focus on those enzymes that are used in the synthesis of drugs and in biotechnological applications. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Natural Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Love, Kerry
Date Added:
01/01/2008
Genetics, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. Structure and function of genes, chromosomes and genomes. Biological variation resulting from recombination, mutation, and selection. Population genetics. Use of genetic methods to analyze protein function, gene regulation and inherited disease.

Subject:
Biology
Education
Genetics
Natural Science
Material Type:
Activity/Lab
Assessment
Diagram/Illustration
Full Course
Homework/Assignment
Lecture Notes
Student Guide
Syllabus
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Fink, Gerald
Kaiser, Chris
Mischke, Michelle
Samson, Leona
Date Added:
01/01/2004
Macroepidemiology (BE.102), Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course presents a unique and challenging perspective on the causes of human disease and mortality. The course focuses on analyses of major causes of mortality in the US since 1900: cancer cardiovascular and cerebrovascular diseases, diabetes, infectious diseases. Students create analytical models to derive estimates for historically variant population risk factors and physiological rate parameters, and conduct analyses of familial data to separately estimate inherited and environmental risks. The course evaluates the basic population genetics of dominant, recessive and non-deleterious inherited risk factors.

Subject:
Applied Science
Environmental Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Thilly, William
Date Added:
01/01/2005
Molecular Biology
Unrestricted Use
CC BY
Rating
0.0 stars

After a historical introduction to molecular biology, this course describes the basic types of DNA and RNA structure and the molecular interactions that shape them. It describes how DNA is packaged within the cellular nucleus as chromosomes. It also describes the core processes of molecular biology: replication of DNA, transcription of DNA into messenger RNA, and translation of messenger RNA into a protein. These are followed by modifications of these basic processes: regulation of gene expression, DNA mutation and repair, and DNA recombination and transposition. Upon successful completion of this course, students will be able to: discuss the experimental findings that lead to the discovery of inheritance laws; discuss the experimental findings that lead to the identification of DNA as the hereditary material; compare and contrast the structure and function of mRNA, rRNA, tRNA, and DNA; identify the characteristics of catalyzed reactions; compare and contrast enzyme and ribozyme catalyzed reactions; discuss the structure of the chromosome and the consequence of histone modifications in eukaryotes; discuss the stages of transcription, differential splicing, and RNA turnover; predict the translation product of an mRNA using the genetic code; compare and contrast transcription and translation in prokaryotes and eukaryotes; identify codon bias and variations of the standard genetic code; compare and contrast the regulation of prokaryotic and eukaryotic gene expression; predict the activation of an operon and tissue specific gene expression based on the availability of regulators; compare and contrast mutations based on their effect on the gene product; discuss DNA repair mechanisms; discuss DNA recombination, transposition, and the consequence of exon shuffling; design custom-made recombinant DNA using PCR, restriction enzymes, and site-directed mutagenesis; compare and contrast the uses of model organisms; discuss the uses of model organisms in specific molecular biology applications. (Biology 311)

Subject:
Biology
Natural Science
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
04/29/2019
Psychology
Unrestricted Use
CC BY
Rating
0.0 stars

Psychology is designed to meet scope and sequence requirements for the single-semester introduction to psychology course. The book offers a comprehensive treatment of core concepts, grounded in both classic studies and current and emerging research. The text also includes coverage of the DSM-5 in examinations of psychological disorders. Psychology incorporates discussions that reflect the diversity within the discipline, as well as the diversity of cultures and communities across the globe.Senior Contributing AuthorsRose M. Spielman, Formerly of Quinnipiac UniversityContributing AuthorsKathryn Dumper, Bainbridge State CollegeWilliam Jenkins, Mercer UniversityArlene Lacombe, Saint Joseph's UniversityMarilyn Lovett, Livingstone CollegeMarion Perlmutter, University of Michigan

Subject:
Psychology
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
02/14/2014
Psychology, Biopsychology, Human Genetics
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to:

Explain the basic principles of the theory of evolution by natural selection
Describe the differences between genotype and phenotype
Discuss how gene-environment interactions are critical for expression of physical and psychological characteristics

Subject:
Social Science
Material Type:
Module
Date Added:
09/20/2018