Updating search results...

Search Resources

402 Results

View
Selected filters:
  • Engineering
Impact of Materials on Society
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This textbook supports the Impact of Materials on Society course and teaching materials, developed with the Materials Research Society. The textbook offers an exploration into materials (including ceramics, clay, concrete, glass, metals, and polymers) and the relationship with technologies and social structures. The textbook was developed by an interdisciplinary team from Engineering and Liberal Arts and Sciences, including anthropologists, sociologists, historians, media studies experts, Classicists, and more.

Table of Contents
Understanding the Material World
Clay: The Entanglement of Earth in the Age of Clay
Ceramics: Firing Clay and Flaking Stone
Concrete: Engineering Society through Social Spaces
Copper and Bronze: The Far-Reaching Consequences of Metallurgy
Gold and Silver: Precious Metals and Coinage
Steel: Carnegie and Creative Destruction
Aluminum: Alcoa and Anti-Trust
Polymers: Fantastic Plastics in Postwar America
Writing Materials: The Politics and Preservation of Knowledge

Subject:
Applied Science
Engineering
Material Type:
Textbook
Author:
Kevin S. Jones
Marsha Bryant
University of Florida
Sophia Krzys Acord
Date Added:
10/18/2021
Industrial Biotechnology
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

As fossil-based fuels and raw materials contribute to climate change, the use of renewable materials and energy as an alternative is increasingly important and common. This transition is not a luxury, but rather a necessity. We can use the unique properties of microorganisms to convert organic waste streams into biomaterials, chemicals and biofuels.

This course provides the insights and tools for the design of biotechnology processes in a sustainable way. Five experienced course leaders will teach you the basics of industrial biotechnology and how to apply these to the design of fermentation processes for the production of fuels, chemicals and foodstuffs.

Throughout this course, you will be challenged to design your own biotechnological process and evaluate its performance and sustainability. This undergraduate course includes guest lectures from industry as well as from the University of Campinas in Brazil, with over 40 years of experience in bio-ethanol production. The course is a joint initiative of TU Delft, the international BE-Basic consortium and University of Campinas.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Prof. dr. Isabel Arends
Prof.dr. Patricia Osseweijer
Prof.dr.ir. Henk Noorman
Prof.dr.ir. Luuk van der Wielen
Prof.dr.ir. Sef Heijnen
Date Added:
04/25/2019
Instaptoets Wiskunde
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Parate kennis en algebraĚřsche vaardigheden die onderdeel uitmaken van het Vwo wiskunde B-examenprogramma worden opgefrist. Hierbij moet gedacht worden aan het handig manipuleren van goniometrische formules, bewerkingen met logaritmen, toepassen van de kettingregel, primitiveren, oplossen van vergelijkingen, enzovoorts.

Subject:
Applied Science
Engineering
Material Type:
Lecture
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
W.T.M. Caspers
Date Added:
04/25/2019
Integrated Chemical Engineering II, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Presents and solves chemical engineering problems in an industrial context, with applications varying by semester. Emphasis on the integration of fundamental concepts with approaches of process design. Emphasis on problems that demand synthesis, economic analysis, and process design .This course introduces students to methods and background needed for the conceptual design of continuously operating chemical plants. Particular attention is paid to the use of process modeling tools such as Aspen that are used in industry and to problems of current interest. Each student team is assigned to evaluate and design a different technology and prepare a final design report. For spring 2006, the theme of the course is to design technologies for lowering the emissions of climatically active gases from processes that use coal as the primary fuel.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Mcrae, Gregory
Date Added:
01/01/2006
Integrated Chemical Engineering Topics I: Introduction to Biocatalysis, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides a brief introduction to the field of biocatalysis in the context of process design. Fundamental topics include why and when one may choose to use biological systems for chemical conversion, considerations for using free enzymes versus whole cells, and issues related to design and development of bioconversion processes. Biological and engineering problems are discussed as well as how one may arrive at both biological and engineering solutions.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Prather, Kristala
Date Added:
01/01/2004
Integration of Reactor Design, Operations, and Safety, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Todreas, Neil
Date Added:
01/01/2006
Intelligent User Experience Engineering
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course Intelligent User eXperience Engineering (IUXE) is given for the master programme 'Media and Knowledge Engineering' and for students from other master programmes. The aim is to achieve an understanding and practical experience of key principles, methods and theories in the area of intelligent user experience engineering. Study Goals: Knowledge of a basic, coherent approach for developing software systems in such a way that the systems' users can accomplish their goals effectively and efficiently, and with a high level of satisfaction. Knowledge of new theories and methods for improving the user experiences in the development of intelligent systems, and of research approaches to enhance the theoretical and empirical foundation of IUXE methods. Practical experience in an iterative human-centered development process, i.e. the application of theories and methods for the generation and testing of intelligent user interfaces. This process comprises the generation of a design with its rational, and user experience testing with video analysis, logging and data analyses tools.

Subject:
Applied Science
Engineering
Material Type:
Assessment
Lecture
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Mark Neerincx
Date Added:
02/15/2016
Intermediate Fluid Mechanics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This book is meant to be a second course in fluid mechanics that stresses applications dealing with external potential flows and intermediate viscous flows. Students are expected to have some background in some of the fundamental concepts of the definition of a fluid, hydrostatics, use of control volume conservation principles, initial exposure to the Navier-Stokes equations, and some elements of flow kinematics, such as streamlines and vorticity. It is not meant to be an in-depth study of potential flow or viscous flow, but is meant to expose students to additional analysis techniques for both of these categories of flows. We will see applications to aerodynamics, with analysis methods able to determine forces on arbitrary bodies. We will also examine some of the exact solutions of the Navier-Stokes equations based on classical fluid mechanics. Finally we will explore the complexities of turbulent flows and how for boundary layer flows one can predict drag forces. This compilation is drafted from notes used in the course Intermediate Fluid Mechanics, offered to seniors and first year graduate students who have a background in mechanical engineering or a closely related area.

Table of Contents
I. Introduction
II. Mathematical Tools
III. Bernoulli Equation
IV. Potential Flow Basics
V. Potential Flows
VI. The Panel Method: An Introduction
VII. Introduction to Viscous Flows
VIII. Boundary Layer Flows
IX. Integral Boundary Layer Relationships
X. Introduction to Turbulence Effects

Subject:
Applied Science
Engineering
Material Type:
Textbook
Author:
Oregon State University
James Liburdy
Date Added:
10/25/2021
Internal Flows in Turbomachines, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In 16.540 we address fluid dynamic phenomena of interest in internal flow situations. The emphasis tends to be on problems that arise in air breathing propulsion, but the application of the concepts covered is more general, and the course is wider in scope, than turbomachines (in spite of the title). Stated more directly, the focus is on the fluid mechanic principles that determine the behavior of a broad class of industrial devices. The material can therefore be characterized, only partly tongue in cheek, as "industrial strength fluid mechanics done in a rigorous manner".

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Greitzer, Edward
Date Added:
01/01/2006
Introductiecursus Technische Bestuurskunde
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Deze introductiemodule biedt een weergave van de introductieweek van Technische Bestuurskunde. In deze week worden colleges over vier verschillende vakgebieden gegeven. Die colleges kun je in deze introductiemodule terugvinden, met daarbij steeds een casus (praktijkvoorbeeld), waaraan je tijdens de introductiemodule werkt. Soms vind je hier uitwerkingen, soms niet. Bijvoorbeeld omdat de casus geen eenduidige uitwerking kent. Door de opnamen van de colleges te bekijken en de cases uit te werken, kun je je een beeld vormen van de opleiding.

Subject:
Applied Science
Engineering
Material Type:
Lecture
Lecture Notes
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
I. Bouwmans
Date Added:
04/25/2019
Introductie in energie- en industriesystemen
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Deze cursus geeft een introductie op de massa- en energienetwerken die de ruggengraat vormen van de economie. De belangrijkste energie- en industriesystemen worden vanuit verschillende perspectieven besproken.

- Kaartkennis van energie- & industriesystemen, met name in Nederland
- Voorraden en stromen, elektriciteitsinfrastructuur, elektriciteitstransport, aardgasinfrastructuur, drink- en afvalwater, industrie, warmte- en CO2-netwerken, toekomstige energie- & industriesystemen
- Vraag- en aanbodfluctuaties, balanshandhaving

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Assessment
Lecture
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr.ir. E.J.L. Chappin
Date Added:
04/25/2019
Introduction to Aeronautical Engineering
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides an overview of and introduction to the fundamentals of aeronautics, using the history of aviation as a story line. The course uses examples from the very beginning of aviation (the Montgolfier brothers' balloon flight in 1783 and the Wright brothers' heavier-than-air flight in 1903) and continues all the way through to the current Airbus A380 and future aircraft. This trajectory will start with a general introduction to aeronautics, to be followed by a closer look at aerodynamics and flight performance.

Lectures are frequently accompanied by related exercises and demonstrations. The course also incorporates (design) challenges/competitions, based on the knowledge obtained through the lectures.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Prof.dr.ir. J.M. Hoekstra
Date Added:
03/06/2016
Introduction to Aerospace Engineering I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This first part of the course Introduction to Aerospace Engineering presents an overall picture of the aeronautics domain. This overview involves a number of different perspectives on the aerospace domain, and shows some basic principles of the most important concepts for flight. Then the basic aerodynamics are covered, followed by flight mechanics.Study GoalsHave an overview of the history of flightApply basic/constitutive principles of mechanics of fluids - a.o. Bernoulli.Apply control volume approachesExplain flow regimes (viscous/non-viscous; compressible/incompressible aerodynamics) and to estimate viscous and thermal effects Compute lift/drag of simple configurationsDescribe reference frames and derive general equations of motion for flight and orbital mechanicsApply equations of motion to determine aircraft performance in steady gliding, horizontal and climbing flightDerive aircraft performance diagram and flight envelope, in relation to aircraft morphology, lift-drag polar and engine performance

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
J.M. Hoekstra
Date Added:
02/02/2016
Introduction to Aerospace Engineering II
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This part of the course Introduction to Aerospace Engineering is focused on two aerospace disciplines: "space and orbital mechanics" and "structures and materials". These topics are discussed in detail and will provide an understanding for both aircraft and for spacecraft/space missions. Study Goals- List/describe the reasons for going into space and the principles of rockets, including their trajectories.- Motivate the selection of spacecraft configurations depending on the mission and identify the main elements of a satellite.- Describe the features of the space environment and their consequences for space activities.- Determine elementary satellite orbits, transfer orbits and maneuvers- Describe and work with elementary space propulsion aspects: launch, velocity budget and rocket equation- List the characteristics of typical aerospace materials & structures and describe their meaning and relevance- List the main structural elements of an aerospace vehicle and describe their functions and performance

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
J.M. Hoekstra
Date Added:
02/24/2016
Introduction to Aerospace Structures and Materials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This book provides an introduction to the discipline of aerospace structures and materials. It is the first book to date that includes all relevant aspects of this discipline within a single monologue. These aspects range from materials, manufacturing and processing techniques, to structures, design principles and structural performance, including aspects like durability and safety. With the purpose of introducing students into the basics of the entire discipline, the book presents the subjects broadly and loosely connected, adopting either a formal description or an informal walk around type of presentation. A key lessons conveyed within this book is the interplay between the exact science and engineering topics, like solid material physics and structural analysis, and the soft topics that are not easily captured by equations and formulas. Safety, manufacturability, availability and costing are some of these topics that are presented in this book to explain decisions and design solutions within this discipline.

Subject:
Applied Science
Engineering
Material Type:
Textbook
Author:
René Alderliesten
Date Added:
10/26/2023
Introduction to Aerospace Structures and Materials
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This book provides an introduction to the discipline of aerospace structures and materials. It is the first book to date that includes all relevant aspects of this discipline within a single monologue. These aspects range from materials, manufacturing and processing techniques, to structures, design principles and structural performance, including aspects like durability and safety. With the purpose of introducing students into the basics of the entire discipline, the book presents the subjects broadly and loosely connected, adopting either a formal description or an informal walk around type of presentation. A key lessons conveyed within this book is the interplay between the exact science and engineering topics, like solid material physics and structural analysis, and the soft topics that are not easily captured by equations and formulas. Safety, manufacturability, availability and costing are some of these topics that are presented in this book to explain decisions and design solutions within this discipline.

Table of Contents
Chapter 1: Material physics & properties
Chapter 2: Environment & durability
Chapter 3: Material types
Chapter 4: Manufacturing
Chapter 5: Aircraft & spacecraft structures
Chapter 6: Aircraft & spacecraft loads
Chapter 7: Translating loads to stresses
Chapter 8: Considering strength & stiffness
Chapter 9: Design & certification
Chapter 10: Fatigue & durability
Chapter 11: Structural joints

Subject:
Applied Science
Engineering
Material Type:
Textbook
Author:
René Alderliesten
Date Added:
06/11/2020
Introduction to Biosystems Engineering
Unrestricted Use
CC BY
Rating
0.0 stars

The discipline of Biosystems Engineering emerged in the 1990s from the traditional strongholds of agricultural engineering and food engineering. Biosystems engineering integrates engineering science and design with applied biological, environmental, and agricultural sciences. Introduction to Biosystems Engineering is targeted at 1st and 2nd year university-level students with an interest in biosystems engineering but who are not yet familiar with the breadth and depth of the subject. It is designed as a coherent educational resource, also available for download as individual digital chapters. The book can be used as a localized, customizable text for introductory courses in Biosystems Engineering globally. It is written as a series of stand-alone chapters organized under six major topics: Food and Bioprocessing; Environment; Buildings and Infrastructure; Information and Communications Technology and Data; Machinery Systems; and Energy. Each chapter is organized around stated learning outcomes and describes key concepts, applications of the concepts, and worked examples.

Subject:
Agriculture
Applied Science
Career and Technical Education
Engineering
Material Type:
Textbook
Provider:
Virginia Tech
Provider Set:
VTech Works
Author:
Enda J. Cummins
Jactone A. Ogejo
Mary Leigh Wolfe
Nicholas M. Holden
Date Added:
02/22/2021
Introduction to Communication Systems: An Interactive Approach Using the Wolfram Language
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This ebook provides a unique pedagogical approach to teaching the fundamentals of communication systems using interactive graphics and in-line questions. The material opens with describing the transformation of bits into digital baseband waveforms. Double-sideband suppressed carrier modulation and quadrature modulation then provide the foundation for the discussions of Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), M-ary Quadrature Amplitude Modulation (M-QAM), M-ary Phase Shift Keying (MPSK), and the basic theory of Orthogonal Frequency Division Multiplexing (OFDM). Traditional analog modulation systems are also described. Systems trade-offs, including link budgets, are emphasized. Interactive graphics allow the students to engage with and visualize communication systems concepts. Interactivity and in-line review questions enables students to rapidly examine system tradeoffs and design alternatives. The topics covered build upon each other culminating with an introduction to the implementation of OFDM transmitters and receivers, the ubiquitous technology used in WiFi, 4G and 5G communication systems.

Table of Contents
1. Introduction
2. Signals & Systems Review
3. Baseband Data Transmission
4. Time Division Multiplexing (TDM)
5. Double - Sideband Suppressed Carrier (DSB-SC) Modulation
6. Quadrature Modulation/Multiplexing
7. Frequency Division Multiplexing (FDM) and Orthogonal Frequency Division Multiplexing (OFDM)
8. Double Sideband Large Carrier (DSB - LC) - Commercial AM
9. Single and Vestigial Sideband Modulation (SSB and VSB)
10. Frequency and Phase Modulation (FM/PM)
11. Superheterodyne Receiver
12. Communications Channels, Noise and Link Budgets
13. Performance of Analog Modulation with Noise
14. Performance of Digital Modulation with Noise
15. Multimegabit/sec Terrestrial Wireless Communication Systems: Impairments and Implementation
16. Introduction to Error Detection and Correction Techniques
17. Appendix net*TIMS FreeWire Laboratory Experiments

Subject:
Applied Science
Engineering
Material Type:
Textbook
Author:
Victor S. Frost
Date Added:
09/21/2021
Introduction to Computer Science and Programming, Spring 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This subject is aimed at students with little or no programming experience. It aims to provide students with an understanding of the role computation can play in solving problems. It also aims to help students, regardless of their major, to feel justifiably confident of their ability to write small programs that allow them to accomplish useful goals. The class will use the Python programming language.

Subject:
Applied Science
Computer Science
Education
Engineering
Information Science
Mathematics
Material Type:
Diagram/Illustration
Full Course
Homework/Assignment
Lecture
Textbook
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Guttag, John
Date Added:
01/01/2011
Introduction to Computers and Engineering Problem Solving, Spring 2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course presents the fundamentals of object-oriented software design and development, computational methods and sensing for engineering, and scientific and managerial applications. It cover topics, including design of classes, inheritance, graphical user interfaces, numerical methods, streams, threads, sensors, and data structures. Students use Java programming language to complete weekly software assignments. How is 1.00 different from other intro programming courses offered at MIT? 1.00 is a first course in programming. It assumes no prior experience, and it focuses on the use of computation to solve problems in engineering, science and management. The audience for 1.00 is non-computer science majors. 1.00 does not focus on writing compilers or parsers or computing tools where the computer is the system; it focuses on engineering problems where the computer is part of the system, or is used to model a physical or logical system. 1.00 teaches the Java programming language, and it focuses on the design and development of object-oriented software for technical problems. 1.00 is taught in an active learning style. Lecture segments alternating with laboratory exercises are used in every class to allow students to put concepts into practice immediately; this teaching style generates questions and feedback, and allows the teaching staff and students to interact when concepts are first introduced to ensure that core ideas are understood. Like many MIT classes, 1.00 has weekly assignments, which are programs based on actual engineering, science or management applications. The weekly assignments build on the class material from the previous week, and require students to put the concepts taught in the small in-class labs into a larger program that uses multiple elements of Java together.

Subject:
Applied Science
Computer Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Christopher Cassa
George Kocur
Marta C. Gonzalez
Date Added:
01/01/2012