Fundamentals of nuclear physics for engineering students. Basic properties of the nucleus …
Fundamentals of nuclear physics for engineering students. Basic properties of the nucleus and nuclear radiations. Elementary quantum mechanical calculations of bound-state energies and barrier transmission probability. Binding energy and nuclear stability. Interactions of charged particles, neutrons, and gamma rays with matter. Radioactive decays. Energetics and general cross-section behavior in nuclear reactions.
Biology 2e is designed to cover the scope and sequence requirements of a …
Biology 2e is designed to cover the scope and sequence requirements of a typical two-semester biology course for science majors. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology includes rich features that engage students in scientific inquiry, highlight careers in the biological sciences, and offer everyday applications. The book also includes various types of practice and homework questions that help students understand—and apply—key concepts. The 2nd edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Art and illustrations have been substantially improved, and the textbook features additional assessments and related resources.
By the end of this section, you will be able to do …
By the end of this section, you will be able to do the following:
Describe the structure of eukaryotic cells Compare animal cells with plant cells State the role of the plasma membrane Summarize the functions of the major cell organelles
By the end of this section, you will be able to do …
By the end of this section, you will be able to do the following:
Describe the cytoskeleton Compare the roles of microfilaments, intermediate filaments, and microtubules Compare and contrast cilia and flagella Summarize the differences among the components of prokaryotic cells, animal cells, and plant cells
By the end of this section, you will be able to do …
By the end of this section, you will be able to do the following:
Define matter and elements Describe the interrelationship between protons, neutrons, and electrons Compare the ways in which electrons can be donated or shared between atoms Explain the ways in which naturally occurring elements combine to create molecules, cells, tissues, organ systems, and organisms
Biology, The Cell is an unit of study no. 3 of the …
Biology, The Cell is an unit of study no. 3 of the Biology full course. It is grounded on studying cells, including cell structure, structure and function of plasma membranes, metabolism, cellular respiration, photosynthesis, cell communication, and cell reproduction.
This course will present the student with a detailed overview of a …
This course will present the student with a detailed overview of a cell's main components and functions. The course is roughly organized into four major areas: the cell membrane, cell nucleus, cell cycle, and cell interior. The student will approach most of these topics straightforwardly, from a molecular and structural point of view. Upon completion of this course, the student will be able to: explain what a eukaryotic cell is, identify the components of the cell, and describe how a cell functions; explain how cell membranes are formed; identify the general mechanisms of transport across cell membranes; list the different ways in which cells communicate with one another--specifically, via signaling pathways; define what the extracellular matrix is composed of in different cells and how the extracellular matrix is involved in forming structures in specific tissues; list the components of the cell's cytoskeleton and explain how the cytoskeleton is formed and how it directs cell movements; explain the fundamentals of gene expression and describe how gene expression is regulated at the protein level; define and explain the major cellular events involved in mitosis and cytokinesis; identify the major cellular events that occur during meiosis; describe the eukaryotic cell cycle and identify the events that need to occur during each phase of the cell cycle; identify all of the major organelles in eukaryotic cells and their respective major functions. (Biology 301)
The goal of this course is to teach both the fundamentals of …
The goal of this course is to teach both the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Lectures and class discussions will cover the background and fundamental findings in a particular area of nuclear cell biology. The assigned readings will provide concrete examples of the experimental approaches and logic used to establish these findings. Some examples of topics include genome and systems biology, transcription, and gene expression.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.