Updating search results...

Search Resources

7 Results

View
Selected filters:
  • nucleic-acids
Biochemistry
Unrestricted Use
CC BY
Rating
0.0 stars

Biochemistry is the study of the chemical processes and compounds, such as cellular makeup, that bring about life in organisms. This course will look at how these formed biomolecules interact and produce many of life's necessary processes. Also it will look at the most commonly used techniques in biochemistry research. Upon successful completion of this course, students will be able to: recognize and describe the structure of the following basic biomolecules: nucleic acids, amino acids, lipids, carbohydrates; diagram how these basic biomolecules are used as building blocks for more complex biomolecules; differentiate between reactions that create biomolecules; describe how these biomolecules are used in specific cellular pathways and processes; analyze how feedback from one pathway influences other pathways; explain how energy is utilized by a cell; indicate how biomolecules and pathways are regulated; describe how enzymes play a key role in catalysis; assess which biochemical technique should be used to study a given biochemical problem. (Biology 401; See also: Chemistry 109)

Subject:
Biology
Chemistry
Natural Science
Physical Science
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
04/29/2019
Biology 2e
Unrestricted Use
CC BY
Rating
0.0 stars

Biology 2e is designed to cover the scope and sequence requirements of a typical two-semester biology course for science majors. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology includes rich features that engage students in scientific inquiry, highlight careers in the biological sciences, and offer everyday applications. The book also includes various types of practice and homework questions that help students understand—and apply—key concepts. The 2nd edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Art and illustrations have been substantially improved, and the textbook features additional assessments and related resources.

Subject:
Biology
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
03/07/2018
Freshman Seminar: Structural Basis of Genetic Material: Nucleic Acids, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Since the discovery of the structure of the DNA double helix in 1953 by Watson and Crick, the information on detailed molecular structures of DNA and RNA, namely, the foundation of genetic material, has expanded rapidly. This discovery is the beginning of the "Big Bang" of molecular biology and biotechnology. In this seminar, students discuss, from a historical perspective and current developments, the importance of pursuing the detailed structural basis of genetic materials.

Subject:
Biology
Genetics
Natural Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Zhang, Shuguang
Date Added:
01/01/2005
Organic Chemistry II
Unrestricted Use
CC BY
Rating
0.0 stars

This course is a continuation of Organic Chemistry I. The student will focus on four most important classes of reactions: electrophilic substitution at aromatic rings, nucleophilic addition at carbonyl compounds, hydrolysis of carboxylic acids, and carbon-carbon bond formation using enolates. The enolate portion of this course will cover the reactivity of functional groups. The student will also look at synthetic strategies for making simple, small organic molecules, using the knowledge of organic chemistry accumulated thus far. This course also introduces biological molecules, including carbohydrates, peptides and proteins, lipids, and nucleic acids, from a molecular perspective. The student will learn how chemical reactions, especially oxidation and reduction reactions, form the basis of all life. Note that in biology, the student would study the functionality of these structures by asking, 'How do they operate?' whereas in the field of organic chemistry, the student will ask: 'What are they made of?' The student will conclude this course with a unit on spectroscopy. Upon successful completion of this course, the student will be able to: Identify the chemistry and basic mechanisms of the following functional groups: ethers, epoxides, thiols, sulfides, benzene, amines, aldehydes, ketones, and carboxylic acids and their derivatives; Plan the synthesis of unsymmetrical ethers, amines, and carboxylic acid derivatives (esters, amides, etc.); Predict the product(s) of an electrophilic addition reaction involving conjugated dienes; Use the Diels-Alder reaction on conjugated dienes to form new carbon-carbon bonds and chiral centers of a desired configuration (R or S); Determine whether a molecule is aromatic, non-aromatic, or anti-aromatic; Indicate the position in which an electrophile will be added on an aromatic ring, given the other substituents present; Identify the products and mechanisms of electrophilic and nucleophilic aromatic substitution reactions; Demonstrate mastery of enolate chemistry and techniques for C-C bond formation; Plan the synthesis of simple molecules using the reactions learned throughout both the Organic Chemistry I and Organic Chemistry II courses; Describe the chemistry associated with biological molecules such as amino acids, nucleic acids, lipids, and carbohydrates; Identify different monosaccharides, disaccharides, aldoses, and ketoses, as well as reducing and non-reducing carbohydrates; Identify the twenty naturally occurring amino acids and describe the mechanisms associated with peptide cleavage and synthesis; Use spectroscopy (mass spectrometry, UV-Vis spectrometry, infrared spectrometry, and nuclear magnetic resonance) to characterize an organic molecule. (Chemistry 104; See also: Biology 108)

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
04/29/2019