Updating search results...

Search Resources

9 Results

View
Selected filters:
  • mendel
Biology 2e
Unrestricted Use
CC BY
Rating
0.0 stars

Biology 2e is designed to cover the scope and sequence requirements of a typical two-semester biology course for science majors. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology includes rich features that engage students in scientific inquiry, highlight careers in the biological sciences, and offer everyday applications. The book also includes various types of practice and homework questions that help students understand—and apply—key concepts. The 2nd edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Art and illustrations have been substantially improved, and the textbook features additional assessments and related resources.

Subject:
Biology
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
03/07/2018
Biology 2e, Genetics, Mendel's Experiments and Heredity, Characteristics and Traits
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Explain the relationship between genotypes and phenotypes in dominant and recessive gene systems
Develop a Punnett square to calculate the expected proportions of genotypes and phenotypes in a monohybrid cross
Explain the purpose and methods of a test cross
Identify non-Mendelian inheritance patterns such as incomplete dominance, codominance, recessive lethals, multiple alleles, and sex linkage

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology 2e, Genetics, Mendel's Experiments and Heredity, Laws of Inheritance
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Explain Mendel’s law of segregation and independent assortment in terms of genetics and the events of meiosis
Use the forked-line method and the probability rules to calculate the probability of genotypes and phenotypes from multiple gene crosses
Explain the effect of linkage and recombination on gamete genotypes
Explain the phenotypic outcomes of epistatic effects between genes

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology 2e, Genetics, Mendel's Experiments and Heredity, Mendel’s Experiments and the Laws of Probability
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Describe the scientific reasons for the success of Mendel’s experimental work
Describe the expected outcomes of monohybrid crosses involving dominant and recessive alleles
Apply the sum and product rules to calculate probabilities

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Genetics
Unrestricted Use
CC BY
Rating
0.0 stars

Genetics is the branch of biology that studies the means by which traits are passed on from one generation to the next and the causes of similarities and differences between related individuals. In this course, the student will take a close look at chromosomes, DNA, and genes. The student will learn how hereditary information is transferred, how it can change, how it can lead to human disease and be tested to indicate disease, and much more. Upon successful completion of this course, students will be able to: give a brief synopsis of the history of genetics by explaining the fundamental genetic concepts covered in this course as they were discovered through time; identify the links between Mendel's discoveries (often represented by Punnett squares) with mitosis and meiosis, dominance, penetrance, and linkage; recognize the role of simple probability in genetic inheritance; apply advanced genetic concepts, including genetic mapping and transposons, to practical applications, including pedigree analysis and corn kernel color; identify the cause behind several genetic diseases currently prevalent in society (such as color blindness and hemophilia) and recognize the importance of genetic illness throughout history; compare and contrast advanced concepts of chromosomal, bacterial, human, and population genetics; recognize the similarities and differences between nuclear, chloroplast, and mitochondrial DNA; describe the fundamentals of population genetics, calculate gene frequencies in a give scenario, predict future gene frequencies over future generations, and define the role of evolution in gene frequency shift over time; recall, analyze, synthesize, and build on the foundational material to then learn the cutting-edge technological advances in genetics, including genomics, population and evolutionary genetics, and QTL mapping. (Biology 305)

Subject:
Biology
Genetics
Natural Science
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
04/29/2019
Introduction to Evolutionary Biology and Ecology
Unrestricted Use
CC BY
Rating
0.0 stars

This course describes biological changes that happen on a very large scale, across entire populations of organisms and over the course of millions of years, in the form of evolution and ecology. Upon successful completion of this course, students will be able to: Use their understanding of Mendelian genetics and patterns of inheritance to predict genotypes and phenotypes of offspring or work backwards to identify the genotypes and phenotypes of a parental generation; Distinguish between inheritance patterns that involve autosomal vs. sex-linked traits and identify the respective consequences of each type of inheritance; Identify what distinguishes DarwinĺÎĺĺÎĺs theory of evolution from other arguments that attempt to explain diversity across species and/or many generations; Identify which of many types of natural selection is acting on a particular population/species; Identify which of many types of sexual selection is acting on a particular population/species; Identify the factors that alter the frequencies of alleles in populations over time and describe the effects of these factors on populations; Recognize, read, and create phylogenies and cladograms, using them to explain evolutionary relationships; Determine the ecological interactions affecting a particular community and identify the effects of specific relationships (e.g. symbiosis, competition) on species within that community; Distinguish between world biomes in terms of their climate, nutrient cycles, energy flow, and inhabitants; Use their knowledge of nutrient cycles and energy flow to estimate the effect that changes in physical or biological factors would have on a particular ecosystem. (Biology 102; See also: Psychology 204)

Subject:
Biology
Ecology
Natural Science
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
04/29/2019
Open Genetics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Genetics, otherwise known as the Science of Heredity, is the study of biological information, and how this information is stored, replicated, transmitted and used by subsequent generations. The study of genetics can be sub-divided into three main areas: Transmission Genetics, Molecular Genetics, and Population Genetics. In this Introductory text, the focus is on Transmission or Classical Genetics, which deals with the basic principles of heredity and the mechanisms by which traits are passed from one generation to the next. The work of Gregor Mendel is central to Transmission Genetics; as such, there is a discussion about the pioneering work performed by him along with Mendel’s Laws, as they pertain to inheritance. Other aspects of Classical Genetics are covered, including the relationship between chromosomes and heredity, the arrangement of genes on chromosomes, and the physical mapping of genes.

Subject:
Biology
Genetics
Natural Science
Material Type:
Homework/Assignment
Lecture Notes
Reading
Textbook
Provider:
Thompson Rivers University
Author:
Natasha Ramroop Singh
Date Added:
10/26/2023