In this class we will learn about how the process of DNA …
In this class we will learn about how the process of DNA replication is regulated throughout the cell cycle and what happens when DNA replication goes awry. How does the cell know when and where to begin replicating its DNA? How does a cell prevent its DNA from being replicated more than once? How does damaged DNA cause the cell to arrest DNA replication until that damage has been repaired? And how is the duplication of the genome coordinated with other essential processes? We will examine both classical and current papers from the scientific literature to provide answers to these questions and to gain insights into how biologists have approached such problems. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.
Biology 2e is designed to cover the scope and sequence requirements of a …
Biology 2e is designed to cover the scope and sequence requirements of a typical two-semester biology course for science majors. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology includes rich features that engage students in scientific inquiry, highlight careers in the biological sciences, and offer everyday applications. The book also includes various types of practice and homework questions that help students understand—and apply—key concepts. The 2nd edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Art and illustrations have been substantially improved, and the textbook features additional assessments and related resources.
By the end of this section, you will be able to do …
By the end of this section, you will be able to do the following:
Describe the structure of DNA Explain the Sanger method of DNA sequencing Discuss the similarities and differences between eukaryotic and prokaryotic DNA
By the end of this section, you will be able to do …
By the end of this section, you will be able to do the following:
Describe the structure of prokaryotic and eukaryotic genomes Distinguish between chromosomes, genes, and traits Describe the mechanisms of chromosome compaction
Biology, The Cell is an unit of study no. 3 of the …
Biology, The Cell is an unit of study no. 3 of the Biology full course. It is grounded on studying cells, including cell structure, structure and function of plasma membranes, metabolism, cellular respiration, photosynthesis, cell communication, and cell reproduction.
The goal of this course is to teach both the fundamentals of …
The goal of this course is to teach both the fundamentals of nuclear cell biology as well as the methodological and experimental approaches upon which they are based. Lectures and class discussions will cover the background and fundamental findings in a particular area of nuclear cell biology. The assigned readings will provide concrete examples of the experimental approaches and logic used to establish these findings. Some examples of topics include genome and systems biology, transcription, and gene expression.
" During development, the genetic content of each cell remains, with a …
" During development, the genetic content of each cell remains, with a few exceptions, identical to that of the zygote. Most differentiated cells therefore retain all of the genetic information necessary to generate an entire organism. It was through pioneering technology of somatic cell nuclear transfer (SCNT) that this concept was experimentally proven. Only 10 years ago the sheep Dolly was the first mammal to be cloned from an adult organism, demonstrating that the differentiated state of a mammalian cell can be fully reversible to a pluripotent embryonic state. A key conclusion from these experiments was that the difference between pluripotent cells such as embryonic stem (ES) cells and unipotent differentiated cells is solely a consequence of reversible changes. These changes, which have proved to involve reversible alterations to both DNA and to proteins that bind DNA, are known as epigenetic, to distinguish them from genetic alterations to DNA sequence. In this course we will explore such epigenetic changes and study different approaches that can return a differentiated cell to an embryonic state in a process referred to as epigenetic reprogramming, which will ultimately allow generation of patient-specific stem cells and application to regenerative therapy. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching."
The principles of genetics with application to the study of biological function …
The principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. Structure and function of genes, chromosomes and genomes. Biological variation resulting from recombination, mutation, and selection. Population genetics. Use of genetic methods to analyze protein function, gene regulation and inherited disease.
" This course explores recent historical and anthropological approaches to the study …
" This course explores recent historical and anthropological approaches to the study of life, in both medicine and biology. After grounding our conversation in accounts of natural history and medicine that predate the rise of biology as a discipline, we explore modes of theorizing historical and contemporary bioscience. Drawing on the work of historian William Coleman, we examine the forms, functions, and transformations of biological and medical objects of study. Along the way we treat the history of heredity, molecular biology, race, medicine in the colonies and the metropole, and bioeconomic exchange. We read anthropological literature on old and new forms of biopower, at scales from the molecular to the organismic to the global. The course includes readings from the HASTS Common Exam List. The aim of this seminar is to train students to be participants in scholarly debates in the humanities, social sciences, and natural sciences about the nature of life, the body, and biomedicine."
Subject assesses the relationships between sequence, structure, and function in complex biological …
Subject assesses the relationships between sequence, structure, and function in complex biological networks as well as progress in realistic modeling of quantitative, comprehensive functional-genomics analyses. Topics include: algorithmic, statistical, database, and simulation approaches; and practical applications to biotechnology, drug discovery, and genetic engineering. Future opportunities and current limitations critically assessed. Problem sets and project emphasize creative, hands-on analyses using these concepts.
In this course, we will address how transcriptional regulators both prohibit and …
In this course, we will address how transcriptional regulators both prohibit and drive differentiation during the course of development. How does a stem cell know when to remain a stem cell and when to become a specific cell type? Are there global differences in the way the genome is read in multipotent and terminally differentiated cells? We will explore how stem cell pluripotency is preserved, how master regulators of cell-fate decisions execute developmental programs, and how chromatin regulators control undifferentiated versus differentiated states. Additionally, we will discuss how aberrant regulation of transcriptional regulators produces disorders such as developmental defects and cancer. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.