Updating search results...

Search Resources

22 Results

View
Selected filters:
  • gene
Biology 2e
Unrestricted Use
CC BY
Rating
0.0 stars

Biology 2e is designed to cover the scope and sequence requirements of a typical two-semester biology course for science majors. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology includes rich features that engage students in scientific inquiry, highlight careers in the biological sciences, and offer everyday applications. The book also includes various types of practice and homework questions that help students understand—and apply—key concepts. The 2nd edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Art and illustrations have been substantially improved, and the textbook features additional assessments and related resources.

Subject:
Biology
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
03/07/2018
Biology 2e, Genetics, Genes and Proteins, Eukaryotic Transcription
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

List the steps in eukaryotic transcription
Discuss the role of RNA polymerases in transcription
Compare and contrast the three RNA polymerases
Explain the significance of transcription factors

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology 2e, Genetics, Mendel's Experiments and Heredity, Laws of Inheritance
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Explain Mendel’s law of segregation and independent assortment in terms of genetics and the events of meiosis
Use the forked-line method and the probability rules to calculate the probability of genotypes and phenotypes from multiple gene crosses
Explain the effect of linkage and recombination on gamete genotypes
Explain the phenotypic outcomes of epistatic effects between genes

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology 2e, The Cell, Cell Reproduction, Cell Division
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Describe the structure of prokaryotic and eukaryotic genomes
Distinguish between chromosomes, genes, and traits
Describe the mechanisms of chromosome compaction

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology, The Cell
Unrestricted Use
CC BY
Rating
0.0 stars

Biology, The Cell is an unit of study no. 3 of the Biology full course. It is grounded on studying cells, including cell structure, structure and function of plasma membranes, metabolism, cellular respiration, photosynthesis, cell communication, and cell reproduction.

Subject:
Biology
Histology
Natural Science
Material Type:
Diagram/Illustration
Module
Unit of Study
Date Added:
03/26/2019
The DNA Damage Response as a Target for Anti-Cancer Therapy, Fall 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Cellular responses to DNA damage constitute one of the most important fields in cancer biology. In this class we will analyze classical and recent papers from the primary research literature to gain a profound understand of cell cycle regulation and DNA damage checkpoints that act as powerful emergency brakes to prevent cancer. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Natural Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Reinhardt, Hans Christian
Date Added:
01/01/2008
Directed Evolution: Engineering Biocatalysts, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Enzymes, nature's catalysts, are remarkable biomolecules capable of extraordinary specificity and selectivity. Directed evolution has been used to produce enzymes with many unique properties, including altered substrate specificity, thermal stability, organic solvent resistance, and enantioselectivity--selectivity of one stereoisomer over another. The technique of directed evolution comprises two essential steps: mutagenesis of the gene encoding the enzyme to produce a library of variants, and selection of a particular variant based on its desirable catalytic properties. In this course we will examine what kinds of enzymes are worth evolving and the strategies used for library generation and enzyme selection. We will focus on those enzymes that are used in the synthesis of drugs and in biotechnological applications. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Natural Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Love, Kerry
Date Added:
01/01/2008
Genetics, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. Structure and function of genes, chromosomes and genomes. Biological variation resulting from recombination, mutation, and selection. Population genetics. Use of genetic methods to analyze protein function, gene regulation and inherited disease.

Subject:
Biology
Education
Genetics
Natural Science
Material Type:
Activity/Lab
Assessment
Diagram/Illustration
Full Course
Homework/Assignment
Lecture Notes
Student Guide
Syllabus
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Fink, Gerald
Kaiser, Chris
Mischke, Michelle
Samson, Leona
Date Added:
01/01/2004
Psychology
Unrestricted Use
CC BY
Rating
0.0 stars

Psychology is designed to meet scope and sequence requirements for the single-semester introduction to psychology course. The book offers a comprehensive treatment of core concepts, grounded in both classic studies and current and emerging research. The text also includes coverage of the DSM-5 in examinations of psychological disorders. Psychology incorporates discussions that reflect the diversity within the discipline, as well as the diversity of cultures and communities across the globe.Senior Contributing AuthorsRose M. Spielman, Formerly of Quinnipiac UniversityContributing AuthorsKathryn Dumper, Bainbridge State CollegeWilliam Jenkins, Mercer UniversityArlene Lacombe, Saint Joseph's UniversityMarilyn Lovett, Livingstone CollegeMarion Perlmutter, University of Michigan

Subject:
Psychology
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
02/14/2014
Psychology, Biopsychology, Human Genetics
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to:

Explain the basic principles of the theory of evolution by natural selection
Describe the differences between genotype and phenotype
Discuss how gene-environment interactions are critical for expression of physical and psychological characteristics

Subject:
Social Science
Material Type:
Module
Date Added:
09/20/2018