Search Resources

8 Results

View
Selected filters:
  • Organ
Biology 2e
Unrestricted Use
CC BY
Rating

Biology 2e is designed to cover the scope and sequence requirements of a typical two-semester biology course for science majors. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology includes rich features that engage students in scientific inquiry, highlight careers in the biological sciences, and offer everyday applications. The book also includes various types of practice and homework questions that help students understand—and apply—key concepts. The 2nd edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Art and illustrations have been substantially improved, and the textbook features additional assessments and related resources.

Subject:
Biology
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
03/07/2018
Biology 2e, The Chemistry of Life, The Study of Life, Themes and Concepts of Biology
Unrestricted Use
CC BY
Rating

By the end of this section, you will be able to do the following:

Identify and describe the properties of life
Describe the levels of organization among living things
Recognize and interpret a phylogenetic tree
List examples of different subdisciplines in biology

Material Type:
Module
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
09/20/2018
Developmental and Molecular Biology of Regeneration, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

How does a regenerating animal "know" what's missing? How are stem cells or differentiated cells used to create new tissues during regeneration? In this class we will take a comparative approach to explore this fascinating problem by critically examining classic and modern scientific literature about the developmental and molecular biology of regeneration. We will learn about conserved developmental pathways that are necessary for regeneration, and we will discuss the relevance of these findings for regenerative medicine. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Petersen, Christian
Date Added:
01/01/2008
Fields, Forces and Flows in Biological Systems, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This course introduces the basic driving forces for electric current, fluid flow, and mass transport, plus their application to a variety of biological systems. Basic mathematical and engineering tools will be introduced, in the context of biology and physiology. Various electrokinetic phenomena are also considered as an example of coupled nature of chemical-electro-mechanical driving forces. Applications include transport in biological tissues and across membranes, manipulation of cells and biomolecules, and microfluidics.

Subject:
Biology
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Han, Jongyoon (Jay)
Date Added:
01/01/2007
Microscopic Anatomy
Unrestricted Use
CC BY
Rating

In this course, the student will study microscopic anatomy. The course begins with an overview of basic cell structure follow by an explanation of how single cells come together to make up tissues. The student will then study each of the organ systems in the body, understanding how these tissues fit together structurally to form organs and organ systems that carry out specific functions. Upon successful completion of this course, the student will be able to: differentiate among the types of microscopy and describe the importance of microscopes in microscopic anatomy; correctly use the compound light microscope with a working knowledge of the function of each part; identify the organelles within a eukaryotic cell and list the basic function of each; compare and contrast meiosis and mitosis, identifying the steps of each in microscopic images; outline what makes each epithelial, connective, nervous, and muscle tissue unique, where each is found within the body, and how each interacts with other tissue types; point out circulatory system features, including intercalated disks and valves, as well as the differences among different vessel types; identify the cells found in blood and the role of each; define how the tissues and anatomical features that make up the gastrointestinal and respiratory systems come together structurally to support the function of these organ systems; identify the features of the epidermis and dermis of the skin, including the cells, layers, glands, and other features of each layer; explain how the structural arrangement of the lymphatic system and lymph node supports its physiological role of filtering; compare and contrast the structural arrangement of spongy and compact bone; map out the path of plasma filtrate as it moves through the neuron and into the ureter, bladder, and urethra, identifying what types of cells are located in each part; describe the basic structure of endocrine organs, including the reproductive organs; identify what features make special senses tissue unique. (Biology 406)

Subject:
Anatomy/Physiology
Biology
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
04/29/2019
Molecular and Cellular Pathophysiology (BE.450), Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This courses focuses on the fundamentals of tissue and organ response to injury from a molecular and cellular perspective. There is a special emphasis on disease states that bridge infection, inflammation, immunity, and cancer. The systems approach to pathophysiology includes lectures, critical evaluation of recent scientific papers, and student projects and presentations. This term, we focus on hepatocellular carcinoma (HCC), chronic-active hepatitis, and hepatitis virus infections. In addition to lectures, students work in teams to critically evaluate and present primary scientific papers.

Subject:
Anatomy/Physiology
Biology
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Schauer, David
Date Added:
01/01/2005