Angiosperms

From their humble and still obscure beginning during the early Jurassic period, the angiosperms—or flowering plants—have evolved to dominate most terrestrial ecosystems (Figure). With more than 300,000 species, the angiosperm phylum (Anthophyta) is second only to insects in terms of diversification.

 Photo shows a winding pathway bordered by flowers in a variety of colors and shapes.
Flowers. These flowers grow in a botanical garden border in Bellevue, WA. Flowering plants dominate terrestrial landscapes. The vivid colors of flowers and enticing fragrance of flowers are adaptations to pollination by animals like insects, birds, and bats. (credit: Myriam Feldman)

The success of angiosperms is due to two novel reproductive structures: flowers and fruits. The function of the flower is to ensure pollination, often by arthropods, as well as to protect a developing embryo. The colors and patterns on flowers offer specific signals to many pollinating insects or birds and bats that have coevolved with them. For example, some patterns are visible only in the ultraviolet range of light, which can be seen by arthropod pollinators. For some pollinators, flowers advertise themselves as a reliable source of nectar. Flower scent also helps to select its pollinators. Sweet scents tend to attract bees and butterflies and moths, but some flies and beetles might prefer scents that signal fermentation or putrefaction. Flowers also provide protection for the ovule and developing embryo inside a receptacle. The function of the fruit is seed protection and dispersal. Different fruit structures or tissues on fruit—such as sweet flesh, wings, parachutes, or spines that grab—reflect the dispersal strategies that help spread seeds.

1 of 9