This course is designed to introduce students who wish to specialize in …
This course is designed to introduce students who wish to specialize in stress analysis of thin-walled structures to more advanced topics such as the analysis of statically indeterminate structures, warping, constraint stresses, shear diffusion, and elements of plate bending.
Foundations of 3D elasticity. Fluid and elastic wave equations. Elastic and plastic …
Foundations of 3D elasticity. Fluid and elastic wave equations. Elastic and plastic waves in rods and beams. Waves in plates. Interaction with an acoustic fluid. Dynamics and acoustics of cylindrical shells. Radiation and scattering by submerged plates and shells. Interaction between structural elements. Response of plates and shells to high-intensity loads. Dynamic plasticity and fracture. Damage of structure subjected to implosive and impact loads.
This course is a continuation of 24.951. This semester the course topics …
This course is a continuation of 24.951. This semester the course topics of interest include movement, phrase structure, and the architecture of the grammar.
This course provides a deep understanding of engineering systems at a level …
This course provides a deep understanding of engineering systems at a level intended for research on complex engineering systems. It provides a review and extension of what is known about system architecture and complexity from a theoretical point of view while examining the origins of and recent developments in the field. The class considers how and where the theory has been applied, and uses key analytical methods proposed. Students examine the level of observational (qualitative and quantitative) understanding necessary for successful use of the theoretical framework for a specific engineering system. Case studies apply the theory and principles to engineering systems.
Recent results in cryptography and interactive proofs. Lectures by instructor, invited speakers, …
Recent results in cryptography and interactive proofs. Lectures by instructor, invited speakers, and students. Alternate years. The topics covered in this course include interactive proofs, zero-knowledge proofs, zero-knowledge proofs of knowledge, non-interactive zero-knowledge proofs, secure protocols, two-party secure computation, multiparty secure computation, and chosen-ciphertext security.
How can you reduce the energy loss of your home? What is …
How can you reduce the energy loss of your home? What is the underlying science of energy loss in pipes? Which heat and mass transfer problems do we have to tackle to make consumer products?
In this engineering course, you will learn about the engineering principles that play an important role in all of these and more phenomena. You will learn about microbalances, radiation, convection, diffusion and more and their applications in everyday life.
This advanced course is for engineers who want to refresh their knowledge, engineering students who are eager to learn more about heat/mass transport and for all who have fun in explaining the science of phenomena in nature.
Advanced subject focusing on techniques, format, and prose style used in academic …
Advanced subject focusing on techniques, format, and prose style used in academic and professional life. Emphasis on writing as required in fields such as economics, political science, and architecture. Short assignments include: business letters, memos, and proposals that lead toward a written term project. Methods designed to deal with the special problems of those whose first language is not English. Successful completion satisfies Phase II of the Writing Requirement. This workshop is designed to help you write clearly, accurately and effectively in both an academic and a professional environment. In class, we analyze various forms of writing and address problems common to advanced speakers of English. We will often read one another's work.
" This course covers concepts and techniques for the design and implementation …
" This course covers concepts and techniques for the design and implementation of large software systems that can be adapted to uses not anticipated by the designer. Applications include compilers, computer-algebra systems, deductive systems, and some artificial intelligence applications. Topics include combinators, generic operations, pattern matching, pattern-directed invocation, rule systems, backtracking, dependencies, indeterminacy, memoization, constraint propagation, and incremental refinement. Substantial weekly programming Assignments and Labs are an integral part of the subject. There will be extensive programming Assignments and Labs, using MIT/GNU Scheme. Students should have significant programming experience in Scheme, Common Lisp, Haskell, CAML or some other "functional" language."
This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic …
This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem.
Aerodynamics and Aircraft Performance, 3rd edition is a college undergraduate-level introduction to …
Aerodynamics and Aircraft Performance, 3rd edition is a college undergraduate-level introduction to aircraft aerodynamics and performance. This text is designed for a course in Aircraft Performance that is taught before the students have had any course in fluid mechanics, fluid dynamics, or aerodynamics. The text is meant to provide the essential information from these types of courses that is needed for teaching basic subsonic aircraft performance, and it is assumed that the students will learn the full story of aerodynamics in other, later courses. The text assumes that the students will have had a university level Physics sequence in which they will have been introduced to the most fundamental concepts of statics, dynamics, fluid mechanics, and basic conservation laws that are needed to understand the coverage that follows. It is also assumed that students will have completed first year university level calculus sequence plus a course in multi-variable calculus. Separate courses in engineering statics and dynamics are helpful but not necessary. Any student who takes a course using this text after completing courses in aerodynamics or fluid dynamics should find the chapters of this book covering those subjects an interesting review of the material.
The 236-page text was created specifically for use by undergraduate students in Aerospace Engineering and was based on Professor Marchman’s many years of experience teaching related subject matter as well as his numerous wind tunnel research projects related to aircraft aerodynamics and his personal experience as the owner and pilot of a general aviation airplane. It has been used at Virginia Tech and other universities.
Instructors reviewing, adopting, or adapting parts or the whole of the text are requested to register their interest at: https://bit.ly/aerodynamics_interest.
Table of Contents 1. Introduction to Aerodynamics 2. Propulsion 3. Additional Aerodynamics Tools 4. Performance in Straight and Level Flight 5. Altitude Change: Climb and Glide 6. Range and Endurance 7. Accelerated Performance: Takeoff and Landing 8. Accelerated Performance: Turns 9. The Role of Performance in Aircraft Design: Constraint Analysis
These courses, produced by the Massachusetts Institute of Technology, introduce the fundamental …
These courses, produced by the Massachusetts Institute of Technology, introduce the fundamental concepts and approaches of aerospace engineering, highlighted through lectures on aeronautics, astronautics, and design. MIT˘ďď_s Aerospace and Aeronautics curriculum is divided into three parts: Aerospace information engineering, Aerospace systems engineering, and Aerospace vehicles engineering. Visitors to this site will find undergraduate and graduate courses to fit all three of these areas, from Exploring Sea, Space, & Earth: Fundamentals of Engineering Design to Bio-Inspired Structures
Fundamentals of human performance, physiology, and life support impacting engineering design and …
Fundamentals of human performance, physiology, and life support impacting engineering design and aerospace systems. Topics include: effects of gravity on the muscle, skeletal, cardiovascular, and neurovestibular systems; human/pilot modeling and human/machine design; flight experiment design; and life support engineering for extravehicular activity (EVA). Case studies of current research are presented. Assignments include a design project, quantitative homework sets, and quizzes emphasizing engineering and systems aspects.
Classical dynamics beyond Unified Engineering. Application of vector kinematics to analyze the …
Classical dynamics beyond Unified Engineering. Application of vector kinematics to analyze the translation and rotation of rigid bodies. Formulation and solution of the equations of motion using both Newtonian and Lagrangian methods. Analytical and numerical solutions to rigid body dynamics problems. Applications to aircraft flight dynamics and spacecraft attitude dynamics.
This course meets weekly, to discuss a combination of aerospace history and …
This course meets weekly, to discuss a combination of aerospace history and current events, in order to understand how they are responsible for the state of the aerospace industry. With invited subject matter experts participating in nearly every session, students have an opportunity to hone their insight through truly informed discussion. The aim of the course is to prepare junior and senior level students for their first industry experiences. Deliverables include a journal and class participation.
This book is a guide to implement simple agent-based evolutionary models using …
This book is a guide to implement simple agent-based evolutionary models using NetLogo.
All the models we implement are agent-based, i.e. individual agents and their interactions are explicitly represented in the models. To formalise agents’ interactions we use the basic framework of Evolutionary Game Theory.
NetLogo is a multi-agent programmable modeling environment used by hundreds of thousands of students, teachers and researchers all around the globe. No coding experience is necessary to fully understand the contents of this book.
Table of Contents 0. Introduction
0.1. Introduction to evolutionary game theory 0.2. Introduction to agent-based modeling 0.3. Introduction to Netlogo 0.4. The fundamentals of NetLogo 1. Our first agent-based evolutionary model
1.0. Our very first model 1.1. Extension to any number of strategies 1.2. Noise and initial conditions 1.3. Interactivity and efficiency 1.4. Analysis of these models 1.5. Answers to exercises 2. Spatial interactions on a grid
Building on Complex Adaptive Systems theory and basic Agent Based Modeling knowledge …
Building on Complex Adaptive Systems theory and basic Agent Based Modeling knowledge presented in SPM4530, the Advanced course will focus on the model development process. The students are expected to conceptualize, develop and verify a model during the course, individually or in a group. The modeling tasks will be, as much as possible, based on real life research problems, formulated by various research groups from within and outside the faculty. Study Goals The main goal of the course is to learn how to form a modeling question, perform a system decomposition, conceptualize and formalize the system elements, implement and verify the simulation and validate an Agent Based Model of a socio-technical system.
Our human society consists of many intertwined Large Scale Socio-Technical Systems (LSSTS), …
Our human society consists of many intertwined Large Scale Socio-Technical Systems (LSSTS), such as infrastructures, industrial networks, the financial systems etc. Environmental pressures created by these systems on EarthŰŞs carrying capacity are leading to exhaustion of natural resources, loss of habitats and biodiversity, and are causing a resource and climate crisis. To avoid this sustainability crisis, we urgently need to transform our production and consumption patterns. Given that we, as inhabitants of this planet, are part of a complex and integrated global system, where and how should we begin this transformation? And how can we also ensure that our transformation efforts will lead to a sustainable world? LSSTS and the ecosystems that they are embedded in are known to be Complex Adaptive Systems (CAS). According to John Holland CAS are "...a dynamic network of many agents (which may represent cells, species, individuals, firms, nations) acting in parallel, constantly acting and reacting to what the other agents are doing. The control of a CAS tends to be highly dispersed and decentralized. If there is to be any coherent behavior in the system, it will have to to arise from competition and cooperation among the agents themselves. The overall behavior of the system is the result of a huge number of decisions made every moment" by many individual agents. Understanding Complex Adaptive Systems requires tools that themselves are complex to create and understand. Shalizi defines Agent Based Modeling as "An agent is a persistent thing which has some state we find worth representing, and which interacts with other agents, mutually modifying each otherŰŞs states. The components of an agent-based model are a collection of agents and their states, the rules governing the interactions of the agents and the environment within which they live." This course will explore the theory of CAS and their main properties. It will also teach you how to work with Agent Based Models in order to model and understand CAS.
Brief review of applied aerodynamics and modern approaches in aircraft stability and …
Brief review of applied aerodynamics and modern approaches in aircraft stability and control. Static stability and trim. Stability derivatives and characteristic longitudinal and lateral-directional motions. Physical effects of wing, fuselage, and tail on aircraft motion. Flight vehicle stabilization by classical and modern control techniques. Time and frequency domain analysis of control system performance. Human pilot models and pilot-in-the-loop control with applications. V/STOL stability, dynamics, and control during transition from hover to forward flight. Parameter sensitivity and handling quality analysis of aircraft through variable flight conditions. Brief discussion of motion at high angles-of-attack, roll coupling, and other nonlinear flight regimes.
16.885J offers an holistic view of the aircraft as a system, covering: …
16.885J offers an holistic view of the aircraft as a system, covering: basic systems engineering; cost and weight estimation; basic aircraft performance; safety and reliability; lifecycle topics; aircraft subsystems; risk analysis and management; and system realization. Small student teams retrospectively analyze an existing aircraft covering: key design drivers and decisions; aircraft attributes and subsystems; and operational experience. Oral and written versions of the case study are delivered. For the Fall 2005 term, the class focuses on a systems engineering analysis of the Space Shuttle. It offers study of both design and operations of the shuttle, with frequent lectures by outside experts. Students choose specific shuttle systems for detailed analysis and develop new subsystem designs using state of the art technology.
There are both practical and theoretical reasons to study algorithms. From a …
There are both practical and theoretical reasons to study algorithms. From a practical standpoint, you have to know a standard set of important algorithms from different areas of computing; in addition, you should be able to design new algorithms and analyze their efficiency. From the theoretical standpoint, the study of algorithms, sometimes called algorithmics, has come to be as the cornerstone of computer science.
This course aim to provide an in-depth understanding of the fundamental algorithmic techniques for design and analysis, in turn impart knowledge and practical competence in use of advanced data structures and the design and Welcome to Advanced computer Security Module. This module provides a study of high-level computer security issues in computer networks and advanced methods of data encryption. It focuses on advanced aspects of computer security, such as encryption, security practices, system security, security for authentication on the Web and password management techniques. Finally this module, students should be able to create secure network architectures adapted to the investment level and required security. Take responsibility for installation, configuration and network security maintenance.
The module aims to give IT infrastructure management skills, where the role of computer security is critical to ensure the integrity of data and the normal operation of the various systems: computer networks, servers and personal computers in the organization. The course will also explore various Information Security controls, how to handle various risk assessment in an organization and finally creating a security policy in organization.
Today, we note that the information is considered the key business of an organization / company due to its usefulness and importance, however, the issue of the company’s Information Security is a priority task for managers, because they recognize the value it has and therefore organizations must make sure that it is managed effectively. For this reason, this module is important because you will learn the methods and tools for computer security that can ensure the confidentiality of information in organizations and also learn how to protect their information and systems in a network environment.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.