Updating search results...

Search Resources

7133 Results

View
Selected filters:
Biology 2e, Genetics, Gene Expression, Cancer and Gene Regulation
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Describe how changes to gene expression can cause cancer
Explain how changes to gene expression at different levels can disrupt the cell cycle
Discuss how understanding regulation of gene expression can lead to better drug design

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology 2e, Genetics, Gene Expression, Eukaryotic Epigenetic Gene Regulation
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Explain how chromatin remodeling controls transcriptional access
Describe how access to DNA is controlled by histone modification
Describe how DNA methylation is related to epigenetic gene changes

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology 2e, Genetics, Gene Expression, Eukaryotic Translational and Post-translational Gene Regulation
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Understand the process of translation and discuss its key factors
Describe how the initiation complex controls translation
Explain the different ways in which the post-translational control of gene expression takes place

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology 2e, Genetics, Gene Expression, Regulation of Gene Expression
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Discuss why every cell does not express all of its genes all of the time
Describe how prokaryotic gene regulation occurs at the transcriptional level
Discuss how eukaryotic gene regulation occurs at the epigenetic, transcriptional, post-transcriptional, translational, and post-translational levels

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology 2e, Genetics, Genes and Proteins, Eukaryotic Transcription
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

List the steps in eukaryotic transcription
Discuss the role of RNA polymerases in transcription
Compare and contrast the three RNA polymerases
Explain the significance of transcription factors

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology 2e, Genetics, Meiosis and Sexual Reproduction, Sexual Reproduction
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Explain that meiosis and sexual reproduction are highly evolved traits
Identify variation among offspring as a potential evolutionary advantage of sexual reproduction
Describe the three different life-cycle types among sexually reproducing multicellular organisms.

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology 2e, Genetics, Meiosis and Sexual Reproduction, The Process of Meiosis
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Describe the behavior of chromosomes during meiosis, and the differences between the first and second meiotic divisions
Describe the cellular events that take place during meiosis
Explain the differences between meiosis and mitosis
Explain the mechanisms within the meiotic process that produce genetic variation among the haploid gametes

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology 2e, Genetics, Mendel's Experiments and Heredity, Characteristics and Traits
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Explain the relationship between genotypes and phenotypes in dominant and recessive gene systems
Develop a Punnett square to calculate the expected proportions of genotypes and phenotypes in a monohybrid cross
Explain the purpose and methods of a test cross
Identify non-Mendelian inheritance patterns such as incomplete dominance, codominance, recessive lethals, multiple alleles, and sex linkage

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018