Updating search results...

Search Resources

60 Results

View
Selected filters:
  • dna
Genetics, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. Structure and function of genes, chromosomes and genomes. Biological variation resulting from recombination, mutation, and selection. Population genetics. Use of genetic methods to analyze protein function, gene regulation and inherited disease.

Subject:
Biology
Education
Genetics
Natural Science
Material Type:
Activity/Lab
Assessment
Diagram/Illustration
Full Course
Homework/Assignment
Lecture Notes
Student Guide
Syllabus
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Fink, Gerald
Kaiser, Chris
Mischke, Michelle
Samson, Leona
Date Added:
01/01/2004
Human Biology
Unrestricted Use
CC BY
Rating
0.0 stars

This textbook has been created with several goals in mind: accessibility, customization, and student engagement—all while encouraging students toward high levels of academic scholarship. Students will find that this textbook offers a strong introduction to human biology in an accessible format.

Table of Contents
Chapter 1: Introduction to Human Biology and the Scientific Method
Chapter 2: Chemistry and Life
Chapter 3: Cells
Chapter 4: DNA and Gene Expression
Chapter 5: Digestive System
Chapter 6: Energy Considerations
Chapter 7: Blood
Chapter 8: Heart
Chapter 9: Blood Vessels
Chapter 10: Respiratory System
Chapter 11: Hormones
Chapter 12: Urinary System
Chapter 13: Mitosis and Meiosis
Chapter 14: Reproductive Systems
Chapter 15: Skeletal System
Chapter 16: Muscles and Movement
Chapter 17: Nervous System
Chapter 18: Special Senses
Chapter 19: Immune System

Subject:
Biology
Natural Science
Material Type:
Textbook
Author:
Willy Cushwa
Date Added:
09/06/2019
Innovation in Military Organizations, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This seminar has three purposes. One, it inquires into the causes of military innovation by examining a number of the most outstanding historical cases. Two, it views military innovations through the lens of organization theory to develop generalizations about the innovation process within militaries. Three, it uses the empirical study of military innovations as a way to examine the strength and credibility of hypotheses that organization theorists have generated about innovation in non-military organizations."

Subject:
Political Science
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Posen, Barry
Sapolsky, Harvey
Date Added:
01/01/2005
Introduction to Biological Engineering Design, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This class is a project-based introduction to the engineering of synthetic biological systems. Throughout the term, students develop projects that are responsive to real-world problems of their choosing, and whose solutions depend on biological technologies. Lectures, discussions, and studio exercises will introduce (1) components and control of prokaryotic and eukaryotic behavior, (2) DNA synthesis, standards, and abstraction in biological engineering, and (3) issues of human practice, including biological safety; security; ownership, sharing, and innovation; and ethics. Enrollment preference is given to freshmen. This subject was originally developed and first taught in Spring 2008 by Drew Endy and Natalie Kuldell. Many of Drew's materials are used in this Spring 2009 version, and are included with his permission. This OCW Web site is based on the OpenWetWare class Wiki, found at OpenWetWare: 20.020 (S09)"

Subject:
Biology
Chemistry
Genetics
Natural Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kuldell, Natalie
Date Added:
01/01/2009
Introduction to Molecular and Cellular Biology - Laboratory
Unrestricted Use
CC BY
Rating
0.0 stars

This lab course supplements Introduction to Molecular and Cellular Biology. Although it does not replicate a true lab experience, it does enable further exploration of some key principles of molecular and cellular biology. In each unit, the student will work through tutorials related to important scientific concepts, and then will be asked to think creatively about how those concepts can be put to practical or experimental use. This lab course also contains activities devoted to learning important techniques in scientific study such as microscope use, DNA extraction, Polymerase Chain Reaction, and examination of DNA microarrays. Upon successful completion of this lab supplement, students will be able to: Identify the important components of scientific experiments and create their own experiments; Identify the molecular differences between proteins, fats, and carbohydrates, and explain the molecular behavior of water; Describe the process of photosynthesis; Describe the process of cellular respiration; Identify the differences between DNA and RNA; Describe the entire transcription/translation process, from gene to protein; Explain how recombinant genomes are formed; Use critical thinking to find ways that any of the above natural processes might be altered or manipulated; Explain how to use a compound light microscope for data collection; Explain how to conduct and use various experimental techniques, including DNA extraction, PCR, and DNA microarrays. (Biology 101 Laboratory)

Subject:
Biology
Genetics
Natural Science
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
04/29/2019
Introductory Biology, Spring 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), developmental biology, neurobiology and evolution.Biological function at the molecular level is particularly emphasized in all courses and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.  

Subject:
Biology
Education
Genetics
Natural Science
Material Type:
Assessment
Diagram/Illustration
Full Course
Homework/Assignment
Reading
Syllabus
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Diviya Sinha
Hazel Sive
Tyler Jacks
Date Added:
01/01/2013
Molecular Biology
Unrestricted Use
CC BY
Rating
0.0 stars

After a historical introduction to molecular biology, this course describes the basic types of DNA and RNA structure and the molecular interactions that shape them. It describes how DNA is packaged within the cellular nucleus as chromosomes. It also describes the core processes of molecular biology: replication of DNA, transcription of DNA into messenger RNA, and translation of messenger RNA into a protein. These are followed by modifications of these basic processes: regulation of gene expression, DNA mutation and repair, and DNA recombination and transposition. Upon successful completion of this course, students will be able to: discuss the experimental findings that lead to the discovery of inheritance laws; discuss the experimental findings that lead to the identification of DNA as the hereditary material; compare and contrast the structure and function of mRNA, rRNA, tRNA, and DNA; identify the characteristics of catalyzed reactions; compare and contrast enzyme and ribozyme catalyzed reactions; discuss the structure of the chromosome and the consequence of histone modifications in eukaryotes; discuss the stages of transcription, differential splicing, and RNA turnover; predict the translation product of an mRNA using the genetic code; compare and contrast transcription and translation in prokaryotes and eukaryotes; identify codon bias and variations of the standard genetic code; compare and contrast the regulation of prokaryotic and eukaryotic gene expression; predict the activation of an operon and tissue specific gene expression based on the availability of regulators; compare and contrast mutations based on their effect on the gene product; discuss DNA repair mechanisms; discuss DNA recombination, transposition, and the consequence of exon shuffling; design custom-made recombinant DNA using PCR, restriction enzymes, and site-directed mutagenesis; compare and contrast the uses of model organisms; discuss the uses of model organisms in specific molecular biology applications. (Biology 311)

Subject:
Biology
Natural Science
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
04/29/2019
Molecular Structure of Biological Materials (BE.442), Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Basic molecular structural principles of biological materials. Molecular structures of various materials of biological origin, including collagen, silk, bone, protein adhesives, GFP, self-assembling peptides. Molecular design of new biological materials for nanotechnology, biocomputing and regenerative medicine. Graduate students are expected to complete additional coursework. This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to give guest lectures.

Subject:
Biology
Genetics
Natural Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Zhang, Shuguang
Date Added:
01/01/2005
Nanomechanics of Materials and Biomaterials, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course focuses on the latest scientific developments and discoveries in the field of nanomechanics, the study of forces and motion on extremely tiny (10-9 m) areas of synthetic and biological materials and structures. At this level, mechanical properties are intimately related to chemistry, physics, and quantum mechanics. Most lectures will consist of a theoretical component that will then be compared to recent experimental data (case studies) in the literature. The course begins with a series of introductory lectures that describes the normal and lateral forces acting at the atomic scale. The following discussions include experimental techniques in high resolution force spectroscopy, atomistic aspects of adhesion, nanoindentation, molecular details of fracture, chemical force microscopy, elasticity of single macromolecular chains, intermolecular interactions in polymers, dynamic force spectroscopy, biomolecular bond strength measurements, and molecular motors.

Subject:
Biology
Chemistry
Genetics
Natural Science
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Ortiz, Christine
Date Added:
01/01/2007
Non-Standard Computing
Unrestricted Use
CC BY
Rating
0.0 stars

Inspired by reality-based computing from the natural world, this course covers several unconventional computational methods and theories, such as quantum computation, DNA and molecular computation, genetic algorithms, self-organizing networks, and cellular automata. Note: for this course, it will be quite helpful to have a working knowledge of cellular biology (available from the Saylor FoundationĺÎĺ_ĺĚĺ_s BIO301). Upon successful completion of this course, the student will be able to: describe abstracted finite-memory program, a finite state automaton, and regular language; list and explain the characteristics of universal Turing transducers; describe the computational idea behind the DNA-based computer; explain the differences between bio-electronic, biochemical, and biomechanical computers; describe the functional principles of genetic algorithms and list their limitations; define the cellular automaton and the cellular neural network, and show examples of how they compute; describe how logic gates may be constructed for quantum bits; describe a simple model for a quantum computer based on a classical computer; describe an algorithm which makes use of quantum parallelism. This free course may be completed online at any time. (Computer Science 411)

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
04/29/2019
OpenStax Biology
Unrestricted Use
CC BY
Rating
0.0 stars

Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.

Subject:
Biology
Natural Science
Material Type:
Full Course
Author:
Julie Adams
Summer Allen
Date Added:
10/03/2018
A Primer for Computational Biology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A Primer for Computational Biology aims to provide life scientists and students the skills necessary for research in a data-rich world. The text covers accessing and using remote servers via the command-line, writing programs and pipelines for data analysis, and provides useful vocabulary for interdisciplinary work. The book is broken into three parts:

Introduction to Unix/Linux: The command-line is the “natural environment” of scientific computing, and this part covers a wide range of topics, including logging in, working with files and directories, installing programs and writing scripts, and the powerful “pipe” operator for file and data manipulation.
Programming in Python: Python is both a premier language for learning and a common choice in scientific software development. This part covers the basic concepts in programming (data types, if-statements and loops, functions) via examples of DNA-sequence analysis. This part also covers more complex subjects in software development such as objects and classes, modules, and APIs.
Programming in R: The R language specializes in statistical data analysis, and is also quite useful for visualizing large datasets. This third part covers the basics of R as a programming language (data types, if-statements, functions, loops and when to use them) as well as techniques for large-scale, multi-test analyses. Other topics include S3 classes and data visualization with ggplot2.

Subject:
Biology
Natural Science
Material Type:
Textbook
Provider:
Oregon State University
Author:
Shawn T. O’Neil
Date Added:
10/26/2023
Psychology
Unrestricted Use
CC BY
Rating
0.0 stars

Psychology is designed to meet scope and sequence requirements for the single-semester introduction to psychology course. The book offers a comprehensive treatment of core concepts, grounded in both classic studies and current and emerging research. The text also includes coverage of the DSM-5 in examinations of psychological disorders. Psychology incorporates discussions that reflect the diversity within the discipline, as well as the diversity of cultures and communities across the globe.Senior Contributing AuthorsRose M. Spielman, Formerly of Quinnipiac UniversityContributing AuthorsKathryn Dumper, Bainbridge State CollegeWilliam Jenkins, Mercer UniversityArlene Lacombe, Saint Joseph's UniversityMarilyn Lovett, Livingstone CollegeMarion Perlmutter, University of Michigan

Subject:
Psychology
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
02/14/2014
Psychology, Biopsychology, Human Genetics
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to:

Explain the basic principles of the theory of evolution by natural selection
Describe the differences between genotype and phenotype
Discuss how gene-environment interactions are critical for expression of physical and psychological characteristics

Subject:
Social Science
Material Type:
Module
Date Added:
09/20/2018
Quantitative Genomics, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Subject assesses the relationships between sequence, structure, and function in complex biological networks as well as progress in realistic modeling of quantitative, comprehensive functional-genomics analyses. Topics include: algorithmic, statistical, database, and simulation approaches; and practical applications to biotechnology, drug discovery, and genetic engineering. Future opportunities and current limitations critically assessed. Problem sets and project emphasize creative, hands-on analyses using these concepts.

Subject:
Biology
Genetics
Natural Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Berwick, Robert
Kho, Alvin
Kohane, Isaac
Mirny, Leonid
Date Added:
01/01/2005
STAR: Software Tools for Academics and Researchers, Spring 2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Software Tools for Academics and Researchers (STAR) program at MIT seeks to bridge the divide between scientific research and the classroom. Understanding and applying research methods in the classroom setting can be challenging due to time constraints and the need for advanced equipment and facilities. The multidisciplinary STAR team collaborates with faculty from MIT and other educational institutions to design software exploring core scientific research concepts. The goal of STAR is to develop innovative and intuitive teaching tools for classroom use. All of the STAR educational tools are freely available. To complement the educational software, the STAR website contains curriculum components/modules which can facilitate the use of STAR educational tools in a variety of educational settings. Students, teachers, and professors should feel welcome to download software and curriculum modules for their own use. Online Publication

Subject:
Applied Science
Information Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Date Added:
01/01/2012
Statistical Physics in Biology, Spring 2011
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Statistical Physics in Biology is a survey of problems at the interface of statistical physics and modern biology. Topics include: bioinformatic methods for extracting information content of DNA; gene finding, sequence comparison, and phylogenetic trees; physical interactions responsible for structure of biopolymers; DNA double helix, secondary structure of RNA, and elements of protein folding; considerations of force, motion, and packaging; protein motors, membranes. We also look at collective behavior of biological elements, cellular networks, neural networks, and evolution.

Subject:
Biology
Natural Science
Physical Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kardar, Mehran
Leonid Mirny
Date Added:
01/01/2005
The X in Sex: A Genetic, Medical, and Evolutionary View of the X Chromosome, Fall 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This course will explore a diverse collection of striking biological phenomena associated with the X chromosome. We will examine the genetic basis and significance of several X-linked mutations. We will also discuss why men are more likely than women to display X-linked traits. We will look at the different mechanisms by which X chromosome gene expression is equalized in mammals, flies, and worms and how these mechanisms can yield unusual phenotypes. Throughout our discussions of the X chromosome we will use both recent and classic primary research papers to learn about this chromosome's fascinating biology. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching."

Subject:
Biology
Genetics
Natural Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Mueller, Jacob
Date Added:
01/01/2009