Updating search results...

Search Resources

1069 Results

View
Selected filters:
  • Rice University
Biology 2e, Genetics, Meiosis and Sexual Reproduction, Sexual Reproduction
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Explain that meiosis and sexual reproduction are highly evolved traits
Identify variation among offspring as a potential evolutionary advantage of sexual reproduction
Describe the three different life-cycle types among sexually reproducing multicellular organisms.

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology 2e, Genetics, Meiosis and Sexual Reproduction, The Process of Meiosis
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Describe the behavior of chromosomes during meiosis, and the differences between the first and second meiotic divisions
Describe the cellular events that take place during meiosis
Explain the differences between meiosis and mitosis
Explain the mechanisms within the meiotic process that produce genetic variation among the haploid gametes

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology 2e, Genetics, Mendel's Experiments and Heredity, Characteristics and Traits
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Explain the relationship between genotypes and phenotypes in dominant and recessive gene systems
Develop a Punnett square to calculate the expected proportions of genotypes and phenotypes in a monohybrid cross
Explain the purpose and methods of a test cross
Identify non-Mendelian inheritance patterns such as incomplete dominance, codominance, recessive lethals, multiple alleles, and sex linkage

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology 2e, Genetics, Mendel's Experiments and Heredity, Laws of Inheritance
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Explain Mendel’s law of segregation and independent assortment in terms of genetics and the events of meiosis
Use the forked-line method and the probability rules to calculate the probability of genotypes and phenotypes from multiple gene crosses
Explain the effect of linkage and recombination on gamete genotypes
Explain the phenotypic outcomes of epistatic effects between genes

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology 2e, Genetics, Mendel's Experiments and Heredity, Mendel’s Experiments and the Laws of Probability
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Describe the scientific reasons for the success of Mendel’s experimental work
Describe the expected outcomes of monohybrid crosses involving dominant and recessive alleles
Apply the sum and product rules to calculate probabilities

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology 2e, Genetics, Modern Understandings of Inheritance, Chromosomal Basis of Inherited Disorders
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Describe how a karyogram is created
Explain how nondisjunction leads to disorders in chromosome number
Compare disorders that aneuploidy causes
Describe how errors in chromosome structure occur through inversions and translocations

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology 2e, Genetics, Modern Understandings of Inheritance, Chromosomal Theory and Genetic Linkage
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Discuss Sutton’s Chromosomal Theory of Inheritance
Describe genetic linkage
Explain the process of homologous recombination, or crossing over
Describe chromosome creation
Calculate the distances between three genes on a chromosome using a three-point test cross

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology 2e, Plant Structure and Function, Plant Form and Physiology, Leaves
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Identify the parts of a typical leaf
Describe the internal structure and function of a leaf
Compare and contrast simple leaves and compound leaves
List and describe examples of modified leaves

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018