Search Resources

214 Results

View
Selected filters:
  • Physics
Adaptive Map Open Statics Textbook
Conditional Remix & Share Permitted
CC BY-NC
Rating

Open textbook in statics for engineering undergraduates. Covers particles and rigid bodies (extended bodies), structures (trusses), and simple machines. Includes text, videos, images, and worked examples (written and video).

Subject:
Engineering
Physics
Material Type:
Textbook
Provider:
Adaptive Map Digital Textbook Project
Author:
Jacob Moore
Date Added:
04/24/2019
Advanced Device Physics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This course will focus for a large part on MOSFET and CMOS, but also on heterojunction BJT, and photonic devices.First non-ideal characteristics of MOSFETs will be discussed, like channel-length modulation and short-channel effects. We will also pay attention to threshold voltage modification by varying the dopant concentration. Further, MOS scaling will be discussed. A combination of an n-channel and p-channel MOSFET is used for CMOS devices that form the basis for current digital technology. The operation of a CMOS inverter will be explained. We will explain in more detail how the transfer characteristics relate to the CMOS design.

Subject:
Electronic Technology
Physics
Material Type:
Activity/Lab
Lecture Notes
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
R.A.C.M.M. van Swaaij
Date Added:
02/20/2016
Advanced Solid State Physics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This course is about the electronic properties of materials and contains lectures about scattering, transport in metals, phonons and superconductivity.

Subject:
Physics
Material Type:
Assessment
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Y.M. Blanter
Date Added:
02/03/2016
The Adventure of Physics - Volume I: Fall, Flow, and Heat
Only Sharing Permitted
CC BY-NC-ND
Rating

This book is written for anybody who is curious about nature and motion. Curiosity about how people, animals, things, images and space move leads to many adventures. This volume presents the best of them in the domain of everyday life.

Table of Contents
1 Why should we care about motion?
2 From motion measurement to continuity
3 How to describe motion - kinematics
4 From objects and images to conservation
5 From the rotation of the Earth to the relativity of motion
6 Motion due to gravitation
7 Classical mechanics and the predictability of motion
8 Measuring change with action
9 Motion and symmetry
10 Simple motions of extended bodies – oscillations and waves
11 Do extended bodies exist? – Limits of continuity
12 Fluids and their motion
13 On heat and motion reversal invariance
14 Self-organization and chaos - the simplicity of complexity
15 From the limitations of physics to the limits of motion

Subject:
Physics
Material Type:
Textbook
Author:
Christoph Schiller
Date Added:
06/23/2020
The Adventure of Physics - Volume III: Light, Charges, and Brains
Only Sharing Permitted
CC BY-NC-ND
Rating

This book is written for anybody who is curious about nature and motion. Curiosity about how people, animals, things, images and space move leads to many adventures. This volume presents the adventures one encounters when exploring everything electric. The story ranges from the weighing of electric current to the use of magnetic fields to heal bone fractures and up to the understanding of the human brain.

In order to be simple, the text focuses on concepts, while keeping mathematics to the necessary minimum. Understanding the concepts of physics is given precedence over using formulae in calculations. The whole text is within the reach of an undergraduate.

Table of Contents
1 Liquid Electricity, Invisible Fields And Maximum Speed
2 The Description Of Electromagnetic Field Evolution
3 What Is Light
4 Images And The Eye – Optics
5 Electromagnetic Effects
6 Summary And Limits Of Classical Electrodynamics
7 The Story Of The Brain
8 Language And Concepts
9 Observations, Lies And Patterns Of Nature
10 Classical Physics In A Nutshell

Subject:
Physics
Material Type:
Textbook
Author:
Christoph Schiller
Date Added:
06/23/2020
The Adventure of Physics - Volume II: Relativity
Only Sharing Permitted
CC BY-NC-ND
Rating

This book is written for anybody who is curious about nature and motion. Curiosity about how people, animals, things, images and empty space move leads to many adven- tures. This volume presents the best of them in the domains of relativity and cosmology. In the study of motion – physics – special and general relativity form two important building blocks.

Special relativity is the exploration of the energy speed limit c. General relativity is the exploration of the force limit c4/4G. The text shows that in both domains, all equations follow from these two limit values. This simple, intuitive and unusual way of learning relativity should reward the curiosity of every reader – whether student or professional.

The present volume is the second of a six-volume overview of physics that arose from a threefold aim that I have pursued since 1990: to present motion in a way that is simple, up to date and captivating.

Table of Contents
1 Maximum Speed, Observers At Rest And Motion Of Light
2 Relativistic Mechanics
3 Special Relativity In Four Sentences
4 Simple General Relativity: Gravitation, Maximum Speed And Maximum Force
5 How Maximum Speed Changes Space, Time And Gravity
6 Open Orbits, Bent Light And Wobbling Vacuum
7 From Curvature To Motion
8 Why Can We See The Stars? – Motion In The Universe
9 Black Holes – Falling Forever
10 Does Space Differ From Time?
11 General Relativity In A Nutshell – A Summary For The Layman

Subject:
Physics
Material Type:
Textbook
Author:
Christoph Schiller
Date Added:
06/23/2020
The Adventure of Physics - Volume IV: The Quantum of Change
Only Sharing Permitted
CC BY-NC-ND
Rating

This book is written for anybody who is curious about nature and motion. Have you ever asked: Why do people, animals, things, images and space move? The answer leads to many adventures; this volume presents those due to the discovery that there is a smallest change value in nature. This smallest change value, the quantum of action, leads to what is called quantum physics. In the structure of modern physics, quantum physics covers three points; this volume covers the introduction to the point in the lower right: the foundations of quantum theory.

Table of Contents
1 Minimum Action – Quantum Theory For Poets
2 Light – The Strange Consequences Of The Quantum Of Action
3 Motion Of Matter – Beyond Classical Physics
4 The Quantum Description Of Matter And Its Motion
5 Permutation Of Particles – Are Particles Like Gloves?
6 Rotations And Statistics – Visualizing Spin
7 Superpositions And Probabilities – Quantum Theory Without Ideology
8 Colours And Other Interactions Between Light And Matter
9 Quantum Physics In A Nutshell

Subject:
Physics
Material Type:
Textbook
Author:
Christoph Schiller
Date Added:
06/23/2020
The Adventure of Physics - Volume VI: The Strand Model - A Speculation on Unification
Only Sharing Permitted
CC BY-NC-ND
Rating

This book is written for anybody who is intensely curious about nature and motion. Have you ever asked: Why do people, animals, things, images and empty space move? The answer leads to many adventures, and this book presents one of the best of them: the search for a precise, unified and final description of all motion.

Table of Contents
1 From Millennium Physics To Unification
2 Physics In Limit Statements
3 General Relativity Versus Quantum Theory
4 Does Matter Differ From Vacuum?
5 What Is The Difference Between The Universe And Nothing?
6 The Shape Of Points – Extension In Nature
7 The Basis Of The Strand Model
8 Quantum Theory Of Matter Deduced From Strands
9 Gauge Interactions Deduced From Strands
10 General Relativity Deduced From Strands
11 The Particle Spectrum Deduced From Strands
12 Particle Properties Deduced From Strands
13 Experimental Predictions Of The Strand Model
14 The Top Of Motion Mountain

Subject:
Physics
Material Type:
Textbook
Author:
Christoph Schiller
Date Added:
06/23/2020
The Adventure of Physics - Volume V: Motion Inside Matter - Pleasure, Technology, and Stars
Only Sharing Permitted
CC BY-NC-ND
Rating

This book is written for anybody who is curious about nature and motion. Curiosity about how bodies, images and empty space move leads to many adventures. This volume presents the best adventures about the motion inside people, inside animals, and inside any other type of matter – from the largest stars to the smallest nuclei.

Table of Contents
1 Motion For Enjoying Life
2 Changing The World With Quantum Effects
3 Quantum Electrodynamics – The Origin Of Virtual Reality
4 Quantum Mechanics With Gravitation – First Steps
5 The Structure Of The Nucleus – The Densest Clouds
6 The Sun, The Stars And The Birth Of Matter
7 The Strong Interaction – Inside Nuclei And Nucleons
8 The Weak Nuclear Interaction And The Handedness Of Nature
9 The Standard Model Of Particle Physics – As Seen On Television
10 Dreams Of Unification
11 Bacteria, Flies And Knots
12 Quantum Physics In A Nutshell – Again

Subject:
Physics
Material Type:
Textbook
Author:
Christoph Schiller
Date Added:
06/23/2020
Aerodynamics of Viscous Fluids, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Boundary layers as rational approximations to the solutions of exact equations of fluid motion. Physical parameters influencing laminar and turbulent aerodynamic flows and transition. Effects of compressibility, heat conduction, and frame rotation. Influence of boundary layers on outer potential flow and associated stall and drag mechanisms. Numerical solution techniques and exercises. The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included.

Subject:
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Merchant, Ali A.
Date Added:
01/01/2003
Aeronautics and Astronautics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

These courses, produced by the Massachusetts Institute of Technology, introduce the fundamental concepts and approaches of aerospace engineering, highlighted through lectures on aeronautics, astronautics, and design. MIT˘ď‹ď_s Aerospace and Aeronautics curriculum is divided into three parts: Aerospace information engineering, Aerospace systems engineering, and Aerospace vehicles engineering. Visitors to this site will find undergraduate and graduate courses to fit all three of these areas, from Exploring Sea, Space, & Earth: Fundamentals of Engineering Design to Bio-Inspired Structures

Subject:
Engineering
Mathematics
Chemistry
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Date Added:
03/17/2011
Applications of Maxwell's Equations
Unrestricted Use
CC BY
Rating

This book was developed at Simon Fraser University for an upper-level physics course. Along with a careful exposition of electricity and magnetism, it devotes a chapter to ferromagnets. According to the course description, the topics covered were “electromagnetics, magnetostatics, waves, transmission lines, wave guides, antennas, and radiating systems.”

Table of Contents
1 Maxwell's Equations
2 Electrostatic Field (I)
3 Electrostatic Field (II)
4 The Magnetostatic Field (I)
5 The Magnetostatic Field (II)
6 Ferromagnetism
7 Time Dependent Electromagnetic Fields
8 E.M. Fields and Energy Flow
9 Plane Waves (I)
10 Plane Waves (II)
11 Transmission Lines
12 Waveguides

Subject:
Physics
Material Type:
Textbook
Author:
Bretislav Heinrich
John Cochran
Date Added:
06/15/2020
Applied Geometric Algebra, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Laszlo Tisza was Professor of Physics Emeritus at MIT, where he began teaching in 1941. This online publication is a reproduction the original lecture notes for the course "Applied Geometric Algebra" taught by Professor Tisza in the Spring of 1976. Over the last 100 years, the mathematical tools employed by physicists have expanded considerably, from differential calculus, vector algebra and geometry, to advanced linear algebra, tensors, Hilbert space, spinors, Group theory and many others. These sophisticated tools provide powerful machinery for describing the physical world, however, their physical interpretation is often not intuitive. These course notes represent Prof. Tisza's attempt at bringing conceptual clarity and unity to the application and interpretation of these advanced mathematical tools. In particular, there is an emphasis on the unifying role that Group theory plays in classical, relativistic, and quantum physics. Prof. Tisza revisits many elementary problems with an advanced treatment in order to help develop the geometrical intuition for the algebraic machinery that may carry over to more advanced problems. The lecture notes came to MIT OpenCourseWare by way of Samuel Gasster, '77 (Course 18), who had taken the course and kept a copy of the lecture notes for his own reference. He dedicated dozens of hours of his own time to convert the typewritten notes into LaTeX files and then publication-ready PDFs. You can read about his motivation for wanting to see these notes published in his Preface below. Professor Tisza kindly gave his permission to make these notes available on MIT OpenCourseWare.

Subject:
Algebra
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Tisza, L
Date Added:
01/01/2009
Applied Nuclear Physics, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Fundamentals of nuclear physics for engineering students. Basic properties of the nucleus and nuclear radiations. Elementary quantum mechanical calculations of bound-state energies and barrier transmission probability. Binding energy and nuclear stability. Interactions of charged particles, neutrons, and gamma rays with matter. Radioactive decays. Energetics and general cross-section behavior in nuclear reactions.

Subject:
Engineering
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Yip, Sidney
Date Added:
01/01/2006
Astrophysics II, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Galactic dynamics: potential theory, orbits, collisionless Boltzmann equation, etc. Galaxy interactions. Groups and clusters; dark matter. Intergalactic medium; x-ray clusters. Active galactic nuclei: unified models, black hole accretion, radio and optical jets, etc. Homogeneity and isotropy, redshift, galaxy distance ladder. Newtonian cosmology. Roberston-Walker models and cosmography. Early universe, primordial nucleosynthesis, recombination. Cosmic microwave background radiation. Large-scale structure, galaxy formation.

Subject:
Astronomy
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Schechter, Paul
Date Added:
01/01/2004
Astrophysics I, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Size and time scales. Historical astronomy. Astronomical instrumentation. Stars: spectra and classification. Stellar structure equations and survey of stellar evolution. Stellar oscillations. Degenerate and collapsed stars; radio pulsars. Interacting binary systems; accretion disks, x-ray sources. Gravitational lenses; dark matter. Interstellar medium: HII regions, supernova remnants, molecular clouds, dust; radiative transfer; Jeans' mass; star formation. High-energy astrophysics: Compton scattering, bremsstrahlung, synchrotron radiation, cosmic rays. Galactic stellar distributions and populations; Oort constants; Oort limit; and globular clusters.

Subject:
Astronomy
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Chakrabarty, Deepto
Date Added:
01/01/2006
Atmospheric Physics and Chemistry, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This course provides an introduction to the physics and chemistry of the atmosphere, including experience with computer codes. It is intended for undergraduates and first year graduate students.

Subject:
Chemistry
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Mcrae, Gregory
Date Added:
01/01/2006
Atmospheric Radiation, Fall 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. Solution of inverse problems in remote sensing of atmospheric temperature and composition.

Subject:
Atmospheric Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
McClatchey, Robert
Seager, Sara
Date Added:
01/01/2008
Atomic and Optical Physics II, Spring 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This is the second of a two-semester subject sequence beginning with Atomic and Optical Physics I (8.421) that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics covered include non-classical states of light–squeezed states; multi-photon processes, Raman scattering; coherence–level crossings, quantum beats, double resonance, superradiance; trapping and cooling-light forces, laser cooling, atom optics, spectroscopy of trapped atoms and ions; atomic interactions–classical collisions, quantum scattering theory, ultracold collisions; and experimental methods.

Subject:
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Ketterle, Wolfgang
Date Added:
01/01/2013
Attraction and Repulsion: The Magic of Magnets, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This Freshman Advising Seminar surveys the many applications of magnets and magnetism. To the Chinese and Greeks of ancient times, the attractive and repulsive forces between magnets must have seemed magical indeed. Through the ages, miraculous curative powers have been attributed to magnets, and magnets have been used by illusionists to produce "magical" effects. Magnets guided ships in the Age of Exploration and generated the electrical industry in the 19th century. Today they store information and entertainment on disks and tapes, and produce sound in speakers, images on TV screens, rotation in motors, and levitation in high-speed trains. Students visit various MIT projects related to magnets (including superconducting electromagnets) and read about and discuss the history, legends, pseudoscience, science, and technology of types of magnets, including applications in medicine. Several short written reports and at least one oral presentation will be required of each participant.

Subject:
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Livingston, James
Date Added:
01/01/2005
BSc Optics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This book treats optics at the level of students in the later stage of their bachelor or the beginning of their master. It is assumed that the student is familiar with Maxwell’s equations. Although the book takes account of the fact that optics is part of electromagnetism, special emphasis is put on the usefulness of approximate models of optics, their hierarchy and limits of validity. Approximate models such as geometrical optics and paraxial geometrical optics are treated extensively and applied to image formation by the human eye, the microscope and the telescope.

Table of Contents
1 Basic Electromagnetic and Wave Optics
2. Geometrical Optics
3. Optical Instruments
4. Polarisation
5. Interference and coherence
6. Scalar diffraction optics
7. Lasers

Subject:
Physics
Material Type:
Textbook
Author:
Aurèle J.L. Adam
H. Paul Urbach
Sander Konijnenberg
Date Added:
04/27/2021
Basics of Fluid Mechanics
Read the Fine Print
Some Rights Reserved
Rating

Fluid mechanics deals with the study of all fluids under static and dynamic situations. Fluid mechanics is a branch of continuous mechanics which deals with a relationship between forces, motions, and statical conditions in a continuous material. This study area deals with many and diversified problems such as surface tension, fluid statics, flow in enclose bodies, or flow round bodies (solid or otherwise), flow stability, etc. In fact, almost any action a person is doing involves some kind of a fluid mechanics problem. Furthermore, the boundary between the solid mechanics and fluid mechanics is some kind of gray shed and not a sharp distinction (see Figure 1.1 for the complex relationships between the different branches which only part of it should be drawn in the same time.). For example, glass appears as a solid material, but a closer look reveals that the glass is a liquid with a large viscosity. A proof of the glass ``liquidity'' is the change of the glass thickness in high windows in European Churches after hundred years. The bottom part of the glass is thicker than the top part. Materials like sand (some call it quick sand) and grains should be treated as liquids. It is known that these materials have the ability to drown people. Even material such as aluminum just below the mushy zone also behaves as a liquid similarly to butter. Furthermore, material particles that "behaves'' as solid mixed with liquid creates a mixture After it was established that the boundaries of fluid mechanics aren't sharp, most of the discussion in this book is limited to simple and (mostly) Newtonian (sometimes power fluids) fluids which will be defined later.

This book describes the fundamentals fluid mechanics phenomena for engineers and others. It is designed to replace all introductory textbook(s) or instructor's notes for the fluid mechanics in undergraduate classes for engineering/science students but also for technical peoples. It is hoped that the book could be used as a reference book for people who have at least some basics knowledge of science areas such as calculus, physics, etc.

Subject:
Engineering
Physics
Material Type:
Textbook
Provider:
Potto Project
Author:
Genick Bar-Meir
Date Added:
01/01/2011
Beijing Urban Design Studio, Summer 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

In 2008, the Beijing Urban Design Studio will focus on the issue of Beijing's urban transformation under the theme of de-industrialization, by preparing an urban design and development plan for the Shougang (Capital Steel Factory) site. This studio will address whether portions of the old massive factory infrastructure can be preserved as a national industrial heritage site embedded into future new development; how to balance the cultural and recreational value of the site with environmental challenges; as well as how to use the site for urban development. A special focus of the studio will be to consider development approaches that minimize energy utilization. To research these questions, students will be asked to interact with clients from the factory, local residents, city officials and experts on transportation, environment, energy and real estate. They will assess strategic options for the steel factory and propose comprehensive plans for the design and development of the brownfield site.

Subject:
Atmospheric Science
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Frenchman, Dennis
Wampler, Jan
Date Added:
01/01/2008
Bending Light
Unrestricted Use
CC BY
Rating

Explore bending of light between two media with different indices of refraction. See how changing from air to water to glass changes the bending angle. Play with prisms of different shapes and make rainbows.

Subject:
Physics
Material Type:
Activity/Lab
Author:
Amy Rouinfar
Ariel Paul
Kathy Perkins
Noah Podolefsky
Sam Reid
Trish Loeblein
Date Added:
08/04/2020
Bio-Inspired Structures, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

" This course is offered for graduate students who are interested in the interdisciplinary study of bio-inspired structures. The intent is to introduce students to newly inspired modern advanced structures and their applications. It aims to link traditional advanced composites to bio-inspired structures and to discuss their generic properties. A link between materials design, strength and structural behavior at different levels (material, element, structural and system levels) is made. For each level, various concepts will be introduced. The importance of structural, dynamic, thermodynamic and kinetic theories related to such processing is highlighted. The pedagogy is based on active learning and a balance of guest lectures and hands-on activities."

Subject:
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Daniel, Leo
Date Added:
01/01/2009
Body Physics: Motion to Metabolism
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Body Physics was designed to meet the objectives of a one-term high school or freshman level course in physical science, typically designed to provide non-science majors and undeclared students with exposure to the most basic principles in physics while fulfilling a science-with-lab core requirement. The content level is aimed at students taking their first college science course, whether or not they are planning to major in science. However, with minor supplementation by other resources, such as OpenStax College Physics, this textbook could easily be used as the primary resource in 200-level introductory courses. Chapters that may be more appropriate for physics courses than for general science courses are noted with an asterisk symbol (*). Of course, this textbook could be used to supplement other primary resources in any physics course covering mechanics and thermodynamics.

Table of Contents
Unit 1: Purpose and Preparation
Unit 2: Measuring the Body
Unit 3: Error in Body Composition Measurement
Unit 4: Better Body Composition Measurement
Unit 5: Maintaining Balance
Unit 6: Forces within the Body
Unit 7: Strength and Elasticity of the Body
Unit 8: Skydiving
Unit 9: Injury and Injury Prevention
Unit 10: Body Energy
Unit 11: Body Heat and The Fight for Life

Subject:
Physics
Material Type:
Textbook
Provider:
OpenOregon
Author:
Lawrence Davis
Date Added:
04/24/2019
Building-Stone Geology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This laboratory activity gives an example of the creativity required when teaching non-native rock types. In order to study igneous and metamorphic rocks in central Florida (a huge area consisting solely of sedimentary rock), geology students examined building stones in downtown St. Petersburg. Each student picked a particular rock type used in a particular way (structure, decorative facade, etc.), performed geologic tests on it, read up on its properties, history, and uses, and prepared a paper on it. Part of the way through the project, the entire class held a walking tour, during which each students' building (and its stones) were visited, and the student studying that type of stone told the class what they had found out about it. Building on this context of use, this website describes learning goals, teaching notes and materials, methods of assessment, and additional reference and resource links for this field lab.

Subject:
Chemistry
Geology
Physics
Material Type:
Activity/Lab
Reading
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Starting Point: Teaching Entry Level Geoscience
Author:
Laura Wetzel
Rebecca Teed
Date Added:
04/04/2019
Calculus-Based Physics I
Conditional Remix & Share Permitted
CC BY-SA
Rating

Calculus-Based Physics is an introductory physics textbook designed for use in the two-semester introductory physics course typically taken by science and engineering students.

Table of Contents
1 Mathematical Prelude
2 Conservation of Mechanical Energy I: Kinetic Energy & Gravitational Potential Energy
3 Conservation of Mechanical Energy II: Springs, Rotational Kinetic Energy
4 Conservation of Momentum
5 Conservation of Angular Momentum
6 One-Dimensional Motion (Motion Along a Line): Definitions and Mathematics
7 One-Dimensional Motion: The Constant Acceleration Equations
8 One-Dimensional Motion: Collision Type II
9 One-Dimensional Motion Graphs
10 Constant Acceleration Problems in Two Dimensions
11 Relative Velocity
12 Gravitational Force Near the Surface of the Earth, First Brush with Newton's 2nd Law
13 Freefall, a.k.a. Projectile Motion
14 Newton's Laws #1: Using Free Body Diagrams
15 Newton's Laws #2: Kinds of Forces, Creating Free Body Diagrams
16 Newton's Laws #3: Components, Friction, Ramps, Pulleys, and Strings
17 The Universal Law of Gravitation
18 Circular Motion: Centripetal Acceleration
19 Rotational Motion Variables, Tangential Acceleration, Constant Angular Acceleration
20 Torque & Circular Motion
21 Vectors: The Cross Product & Torque
22 Center of Mass, Moment of Inertia
23 Statics
24 Work and Energy
25 Potential Energy, Conservation of Energy, Power
26 Impulse and Momentum
27 Oscillations: Introduction, Mass on a Spring
28 Oscillations: The Simple Pendulum, Energy in Simple Harmonic Motion
29 Waves: Characteristics, Types, Energy
30 Wave Function, Interference, Standing Waves
31 Strings, Air Columns
32 Beats, The Doppler Effect
33 Fluids: Pressure, Density, Archimedes' Principle
34 Pascal's Principle, the Continuity Equation, and Bernoulli's Principle
35 Temperature, Internal Energy, Heat, and Specific Heat Capacity
36 Heat: Phase Changes
37 The First Law of Thermodynamics

Reviews available here: https://open.umn.edu/opentextbooks/textbooks/calculus-based-physics-i

Subject:
Physics
Material Type:
Textbook
Provider:
BCcampus
Provider Set:
BCcampus Faculty Reviewed Open Textbooks
Author:
Jeffrey W. Schnick
Date Added:
10/28/2014
Calculus-Based Physics II
Conditional Remix & Share Permitted
CC BY-SA
Rating

Calculus-Based Physics is an introductory physics textbook designed for use in the two-semester introductory physics course typically taken by science and engineering students.

Table of Contents
1 Charge & Coulomb's Law
2 The Electric Field: Description and Effect
3 The Electric Field Due to one or more Point Charges
4 Conductors and the Electric Field
5 Work Done by the Electric Field, and, the Electric Potential
6 The Electric Potential Due to One or More Point Charges
7 Equipotential Surfaces, Conductors, and Voltage
8 Capacitors, Dielectrics, and Energy in Capacitors
9 Electric Current, EMF, Ohm's Law
10 Resistors in Series and Parallel; Measuring I & V
11 Resistivity, Power
12 Kirchhoff's Rules, Terminal Voltage
13 RC Circuits
14 Capacitors in Series & Parallel
15 Magnetic Field Intro: Effects
16 Magnetic Field: More Effects
17 Magnetic Field: Causes
18 Faraday's Law, Lenz's Law
19 Induction, Transformers, and Generators
20 Faraday's Law and Maxwell's Extension to Ampere's Law
21 The Nature of Electromagnetic Waves
22 Huygens's Principle and 2-Slit Interference
23 Single-Slit Diffraction
24 Thin Film Interference
25 Polarization
26 Geometric Optics, Reflection
27 Refraction, Dispersion, Internal Reflection
28 Thin Lenses: Ray Tracing
29 Thin Lenses: Lens Equation, Optical Power
30 The Electric Field Due to a Continuous Distribution of Charge on a Line
31 The Electric Potential due to a Continuous Charge Distribution
32 Calculating the Electric Field from the Electric Potential
33 Gauss's Law
34 Gauss's Law Example
35 Gauss's Law for the Magnetic Field, and, Ampere's Law Revisited
36 The Biot-Savart Law
37 Maxwell's Equations

Subject:
Physics
Material Type:
Textbook
Author:
Jeffrey Schnick
Date Added:
06/23/2020
Classical Mechanics: A Computational Approach, Fall 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

" We will study the fundamental principles of classical mechanics, with a modern emphasis on the qualitative structure of phase space. We will use computational ideas to formulate the principles of mechanics precisely. Expression in a computational framework encourages clear thinking and active exploration. We will consider the following topics: the Lagrangian formulation; action, variational principles, and equations of motion; Hamilton's principle; conserved quantities; rigid bodies and tops; Hamiltonian formulation and canonical equations; surfaces of section; chaos; canonical transformations and generating functions; Liouville's theorem and PoincarĚŠ integral invariants; PoincarĚŠ-Birkhoff and KAM theorems; invariant curves and cantori; nonlinear resonances; resonance overlap and transition to chaos; properties of chaotic motion. Ideas will be illustrated and supported with physical examples. We will make extensive use of computing to capture methods, for simulation, and for symbolic analysis."

Subject:
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Sussman, Gerald
Wisdom, Jack
Date Added:
01/01/2008
Cold War Science, Fall 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

" This seminar examines the history and legacy of the Cold War on American science. It explores scientist's new political roles after World War II, ranging from elite policy makers in the nuclear age to victims of domestic anti Communism. It also examines the changing institutions in which the physical sciences and social sciences were conducted during the postwar decades, investigating possible epistemic effects on forms of knowledge. The subject closes by considering the place of science in the post-Cold War era."

Subject:
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Kaiser, David
Date Added:
01/01/2008
College Physics
Unrestricted Use
CC BY
Rating

This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. This online, fully editable and customizable title includes learning objectives, concept questions, links to labs and simulations, and ample practice opportunities to solve traditional physics application problems.

Subject:
Physics
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax College
Author:
Kim Dirks
Manjula Sharma
Paul Peter Urone
Roger Hinrichs
Date Added:
01/23/2012
College Physics 2
Unrestricted Use
CC BY
Rating

Accessible presentation files created for the College Physics 2 - Intellus Open Course. Intellus Open Courses are curated by academic subject-matter experts in partnership with Macmillan Learning’s editorial teams. Licensed under CC-BY: https://go.intelluslearning.com/attribution

Subject:
Health, Medicine and Nursing
Physical Science
Physics
Material Type:
Lecture Notes
Student Guide
Date Added:
05/27/2019
College Physics for AP Courses
Unrestricted Use
CC BY
Rating

College Physics for AP Courses is designed to engage students in their exploration of physics and help them to relate what they learn in the classroom to their lives and to apply these concepts to the Advanced Placement test. Physics underlies much of what is happening today in other sciences and in technology, therefore the book includes interesting facts and ideas that go beyond the scope of the AP course to further student understanding. The AP Connection in each chapter directs students to the material they should focus on for the AP® exam, and what content — although interesting — is not necessarily part of the AP curriculum.

Subject:
Physics
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax College
Author:
David Anderson
Douglas Ingram
Gregg Wolfe
Irna Lyublinskaya
John Stoke
Julie Kretchman
Liza Pujji
Nathan Czuba
Sudhi Oberoi
Date Added:
04/29/2015
Compressible Flow, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear.

Subject:
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Harris, Wesley Leroy
Date Added:
01/01/2003
Conceptual Physics
Conditional Remix & Share Permitted
CC BY-SA
Rating

For a semester-length course, all seven chapters can be covered. For a shorter course, the book is designed so that chapters 1, 2, and 5 are the only ones that are required for continuity; any of the others can be included or omitted at the instructor’s discretion, with the only constraint being that chapter 6 requires chapter 4.

Subject:
Physics
Material Type:
Textbook
Provider:
Light and Matter
Provider Set:
Light and Matter Books
Author:
Benjamin Crowell, Fullerton College
Date Added:
01/01/2006
Cosmology, Fall 2001
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Thermal backgrounds in space. Cosmological principle and its consequences: Newtonian cosmology and types of "universes"; survey of relativistic cosmology; horizons. Overview of evolution in cosmology; radiation and element synthesis; physical models of the "early stages." Formation of large-scale structure to variability of physical laws. First and last states. Some knowledge of relativity expected. 8.962 recommended though not required. This course provides an overview of astrophysical cosmology with emphasis on the Cosmic Microwave Background (CMB) radiation, galaxies and related phenomena at high redshift, and cosmic structure formation. Additional topics include cosmic inflation, nucleosynthesis and baryosynthesis, quasar (QSO) absorption lines, and gamma-ray bursts. Some background in general relativity is assumed.

Subject:
Astronomy
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Bertschinger, Edmund
Date Added:
01/01/2001
Direct Solar/Thermal to Electrical Energy Conversion Technologies, Fall 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

" This course introduces principles and technologies for converting heat into electricity via solid-state devices. The first part of the course discusses thermoelectric energy conversion and thermoelectric materials, thermionic energy conversion, and photovoltaics. The second part of the course discusses solar thermal technologies. Various solar heat collection systems will be reviewed, followed by an introduction to the principles of solar thermophotovoltaics and solar thermoelectrics. Spectral control techniques, which are critical for solar thermal systems, will be discussed."

Subject:
Physics
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Chen, Gang
Date Added:
01/01/2009
Discover Physics
Conditional Remix & Share Permitted
CC BY-SA
Rating

Discover Physics is a conceptual physics textbook intended for students in a nonmathematical one-semester general-education course.

Subject:
Physics
Material Type:
Textbook
Provider:
Light and Matter
Author:
Ben
Crowell
Date Added:
04/25/2019
Drinking Water Treatment 1 - Technology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

The course provides the technological background of treatment processes applied for production of drinking water. Treatment processes are demonstrated with laboratory experiments.

Subject:
Environmental Studies
Physics
Material Type:
Full Course
Lecture Notes
Reading
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
J.C. van Dijk
Date Added:
03/05/2016